Operational Problems in Traffic Systems
(Continued)

Prof. Ismail Chabini and Prof. Amedeo Odoni
Operational Problems

Part 1: Air Traffic Flow Management

• Introduction and conceptual definition of operational problems
• Ground-holding strategies
• Results from case study

Part 2: Road Traffic Flow Management

• Conceptual organization of road traffic management problems
• Integrated dynamic traffic control and assignment
• Results from case study
Information Technology and Transportation Systems Management

Traffic Management Center

User Services
- traffic information
- routing advice

Traffic Surveillance System

Traffic Control
- signal settings
- ramp meeting

Travel Demand

Transportation Network

Network Supply
Desirable Properties of an ATMS/ATIS

- ATMS/ATIS should be responsive to:
 - “future” demand
 - potential adjustments in travel patterns due to information
 - variations in network capacity due to traffic control actions
- ATMS/ATIS should be based on “projected” traffic conditions to:
 - anticipate downstream traffic conditions
 - improve credibility
Traffic Prediction Approaches

• Statistical Methods
 – require no explicit assignment
 – are suitable for short intervals

• Dynamic Traffic Assignment Methods
 – incorporate driver behavior
 – require network performance
 – require time-dependent O-D flows
 – have high computational requirements
A Framework for (Analytical) Dynamic Traffic Assignment

Dynamic O-D Trips → Subset of Paths

Users’ Behavior Models → path flows

Network Loading Model

Link Performance Models

new paths

Path costs

Link-Based Time-Dependent Network Conditions

Time-Dependent Paths Generation
Time-Dependent Shortest Paths Computation

- Realistic networks: 20k road segments, 7k intersections, 700 destinations, 100 time intervals
- Time of known methods:
 - Can be of quadratic as a function of the number of time intervals
 - May take up to 25 minutes for one destination
- Algorithm DOT:
 - 0.8 seconds for one destination
 - Theoretically, this is the best one can do!
- Other avenues:
 - High performance computing implementations (10 to 20 times faster)
 - Exploit hierarchy of transportation networks (5 to 10 times faster)
- Combined effect: 100*10*5=5000
Types of DTA Models

- Microscopic traffic models (MITSIM):
 - Traffic is represented at the vehicle level
 - Vehicles are moved using car-following and lane changing models

- Mesoscopic traffic models (MesoTS/DynaMIT):
 - Traffic is represented at the vehicle level
 - Speed is obtained using models that relate macroscopic traffic flow variables

- Macroscopic (or flow-based) traffic models:
 - Traffic is represented as continuous variables
 - Speed is obtained using models that relate macroscopic traffic flow variables

- Analytical (flow-based) traffic models
Amsterdam Test Network

- 196 nodes, 310 links, 1134 O-D pairs and 1443 paths
- Morning peak: 2 hours and 20 minutes
- Discretization intervals: 2357 (3.50 sec each)
- Various types of users:
 - Fixed routes
 - Minimum perceived cost routes
 - Minimum experienced cost routes
Computer Resources Used

- Link variables: 25 Mbytes
- Path variables: 34 Mbytes
- Average time for one loading: about 3 minutes
- Saving ratio compared to known analytical methods: 1000
- Results are encouraging for real-time deployment

- MITSIM: 1.5 times slower than real time
- MesoTS: 16 times faster than real time
- Analytical approach: 45 times faster than real time
Interdependence of Control and Assignment

- Consequences of the conventional approach:
 - Sub-optimal signal settings;
 - Inconsistent traffic flow predictions.
A Case Study (cont.)

- **Controls**
 - current existing pre-timed control
 - Webster equal-saturation control
 - Smith P_0 Control
 - One-level Cournot control
 - Bi-level Stackelberg control
 - System-optimal Monopoly control

- **Route Choices**
 - A set of pre-determined paths (4 paths) for each O-D pair
 - Total of 400 paths
 - Demand is model using C-Logit
Results from Back Bay Case Study: Total Travel Time

<table>
<thead>
<tr>
<th>Controls</th>
<th>Total Travel Time (mins)</th>
<th>Gap from System-Optimum (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing</td>
<td>11784</td>
<td>14.12</td>
</tr>
<tr>
<td>Webster</td>
<td>11781</td>
<td>14.1</td>
</tr>
<tr>
<td>Smith P₀</td>
<td>11566</td>
<td>12.02</td>
</tr>
<tr>
<td>Cournot</td>
<td>10642</td>
<td>3.07</td>
</tr>
<tr>
<td>Stackelberg</td>
<td>10504</td>
<td>1.73</td>
</tr>
<tr>
<td>Monopoly</td>
<td>10325</td>
<td>0</td>
</tr>
</tbody>
</table>