Transit Fare Policy, Structure and Technology

MIT – Transit Management Course

March 16, 2010

Dan Fleishman
TranSystems
Fare System Parameters

Fare Policy

- Fare Collection
 - Type of Collection/Verification
 - Payment Media/Technology
- Fare Structure
 - Pricing Strategy
 - Payment Options
 - Pricing Levels
Fare Policy
- Principles, goals and constraints that guide and restrict a transit agency in setting and collecting fares

Fare Structure
- Pricing Strategy: general approach (e.g., flat fare vs. fare differentials)
- Payment Options: forms of fare payment (e.g., cash, passes, multi-ride tickets, stored value)
- Transfer Policy: price and use parameters
- Pricing Levels: actual fare amounts for each payment option

Fare Collection and Technology
- Type of Collection/Verification: how fares are paid and inspected (e.g., barrier, self-service/POP, pay on board)
- Payment Media/Technology: type of payment media and equipment (e.g., magnetic, smart card)
Importance of Fare Policy

- Fare policy affects all aspects of transit system
 - Administration – fare changes tend to be publicly scrutinized & debated
 - Finance – fares are important source of revenue
 - Customer Service -- fare payment is first aspect of transit a customer encounters; complexity and ease of access to prepaid options important customer service factors
 - Marketing – fares affect perception of transit system in the community; fare change or new technology need to be marketed effectively, and offer key general marketing opportunities
 - Operations – fare structure affects ridership levels and thus amount of service needed; fare structure/technology also affect boarding/dwell times and thus service reliability
 - Planning – fare structure/technology affect accuracy of fare data
Fare Policy Goals

- Customer-related (e.g., ridership, ease of use, complexity, range of options, equity)
- Financial (e.g., revenue, fare abuse, revenue control, collection costs)
- Management-related (e.g., data collection, modal integration, flexibility, operations)
- Political (e.g., political acceptability, cost recovery)
Fare Structure

- **Elements include:**
 - Base (single-ride) fare
 - Level(s) of any differentials
 - Transfer policy/pricing
 - Pass pricing and multi-ride discount/bonus
 - Reduced fare levels (e.g., seniors/disabled, students)

- **Methodology for selecting fare levels/changes**
 - Establish criteria (i.e., related to goals)
 - Develop ridership/revenue model -- choice coefficients, elasticities, use of existing options by submarkets
 - Develop scenarios consisting of above elements
 - Use model and criteria to evaluate scenarios
 - Present recommendations to Board

Table 1: Evaluation Criteria -- Decision Guidelines

<table>
<thead>
<tr>
<th>Evaluation Criteria</th>
<th>Measures/Guidelines</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintain or increase revenue</td>
<td>-1 = 0.5% -- 2% decrease 0 = 0.5% decrease -- 0.5% increase 1 = 0.5% -- 2% increase</td>
<td>from Fare Model</td>
</tr>
<tr>
<td>Maintain or increase ridership</td>
<td>-1 = 0.5% -- 2% decrease 0 = 0.5% decrease -- 0.5% increase 1 = 0.5% -- 2% increase</td>
<td>from Fare Model</td>
</tr>
<tr>
<td>Provide seamless fare system</td>
<td>-1 = no transfers (and no day pass) 0 = no change from current 1 = free transfers or day pass</td>
<td>related to ease of transfer between local and regional service</td>
</tr>
<tr>
<td>Simplify fare structure and reduce problems associated with fare structure</td>
<td>-1 = retention of zones 0 = reduced no. of zones 1 = elimination of zones, no pk/off-pk</td>
<td>relates to ease of rider use and operation/administration; "0" if no zones but pk/off-pk</td>
</tr>
<tr>
<td>Reduce fare collection operating & admin. costs</td>
<td>-1 = lower prepayment discounts 0 = no change from current 1 = increased prepayment discounts</td>
<td>increased prepayment results in less cash to handle; relates to pass and st. value/multi-ride discounts</td>
</tr>
<tr>
<td>Maximize public acceptability</td>
<td>-1 = large cash increase 0 = small change in cash fare 1 = no change in cash fare</td>
<td>reflects public opposition or acceptance; "1" if small cash change and deeper discount; "-1" if fare > $1.35</td>
</tr>
</tbody>
</table>
Pricing Strategy

- Flat vs. differentiated fares
 - Flat fare (same base fare throughout system)
 - Zone/distance-based fares
 - Time-of-day differential
 - Express or rail premium

- Most agencies (except commuter rail) have flat fares
 - Zone/distance: 30% of bus systems, 20% heavy rail, 27% LRT, 90% CR
 - Peak/off-peak: 4% of bus systems, 7% heavy rail, 14% LRT, 28% CR
 - Express premium: 23% of bus systems

- Use of differentiation declining; agencies increasingly deciding that disadvantages outweigh advantages
Pricing Strategy (cont.)

- Trade-offs, flat vs. differentiated fares
 - Differentiation advantages include more equitable (fare reflects cost of providing service), potential for higher revenue
 - Flat fare advantages include simpler, easier to administer, potential for higher ridership
- Type of fare collection and technology a factor
 - Distance and time-based differentiation difficult to administer/enforce without electronic payment
 - Zonal/distance-based works best if farecard swiped/tagged on entry and exit (i.e., “tag on/tag off”) on bus and LRT; required on heavy rail
 - Peak/off-peak differential not well-suited to POP system even with electronic payment
- Paper tickets
- Tokens
- Magnetic farecards
 - Read-only (to validate passes)
 - Read-write (for stored-value and other options)
- Smart cards/other chip-based options
 - Contactless payment most appropriate for transit
 - Lower-cost “disposable” contactless paper cards now available
 - Other form factors available (e.g., key fobs, chip-based cell phones)
Type of Fare Collection

- Basic types -- how fares paid/inspected
 - Barrier
 - Pay on boarding
 - Proof-of-payment
 - Conductor

- Considerations
 - Mode of service
 - Demand level
 - Fare structure
 - Space constraints
 - Capital vs. operating costs
Role of Fare Policy in Decision-Making

- Some agencies have comprehensive fare policy statements; these may include:
 - Long-term goals (e.g., maximize ridership, maximize revenue, maximize social equity)
 - Short-term objectives (e.g., recovery ratio or ridership target)
 - Guidelines for reviewing/changing fares (e.g., review annually, tie fares to inflation)
- More common impetus for fare structure/pricing change: response to particular issue or problem (e.g., revenue shortfall)
- Few agencies make fare changes on regularly-scheduled basis
Decision-Making Scenarios

- Policy-driven: agency makes fare structure changes to address specific goals (e.g., simplify, insure equity, increase ridership or revenue)
- Technology-driven: agency makes fare structure changes to take advantage of new technology (e.g., smart card)
- Service-driven: agency makes fare structure changes to accommodate new mode or service (e.g., LRT, express bus)
Emerging Fare-Related Factors and Issues

- Equity/environmental justice concerns
- Increased adoption of electronic fare media
- Focus on providing “seamless” travel in a region (i.e., multi-agency integration)
- New programs/partnership opportunities
 - University programs
 - Employer programs
 - Other (non-transit) applications
Equity and Environmental Justice Issues

- Fare decision-making increasingly influenced by political or legal factors
 - Concern re equal treatment of all groups
 - Organized opposition or legal action against proposed fare increases
- Can define/limit fare structure changes
 - Consent Decree in LA
 - Free transfers, weekly pass in Boston
 - Very deep discount in Philadelphia
Fare Payment Technology Developments

- Electronic media influencing fare policy
- Increasing range of payment options facilitated by electronic media
- Expanding use of smart cards/other options
 - Regional farecards
 - Multiapplication opportunities
 - Use of bankcards for transit
 - Use of chip-based cell phones (Near Field Communications or NFC)
Electronic Payment Options

- Stored value -- various forms of bonus/discount
 - Purchase bonus
 - Add-value bonus
 - Discounted single ride with use of smart card

- Rolling passes
 - 7-day, 14-day, 30/31-day – activate on first use
 - 1-day or partial day -- sold on board buses
Electronic Media Pricing/Reload Options

- Fare policy/pricing options
 - Guaranteed lowest fare (“best fare”)
 - Guaranteed last ride/negative balance
 - Frequency-based bonus/discount
- Autoload arrangements
 - Individual account-based programs (e.g., CTA)
 - Employer programs (e.g., MBTA, WMATA)
Growing emphasis on multi-agency payment integration

Fare policy/structure strategies

- Develop common fare structure elements (e.g., regional passes, free or reduced interagency transfers) OR
- Allow each agency to retain own fare structure; all agencies accept common stored value

Emerging programs all involve smart cards

Examples: SF Bay Area, Los Angeles, San Diego, Ventura Co., Washington-Baltimore, Minneapolis/St. Paul, Seattle, South Florida
Multiapplication Programs

- Transit and other transportation modes
 - Parking (e.g., WMATA)
 - Toll, parking (e.g., Orlando, Singapore)

- Transit and non-transportation applications
 - Banks (e.g., London/Barclay, LA Metro/Visa)
 - Retail (e.g., Hong Kong)
 - ID, access, security (e.g., WMATA/GSA)

- Use of bank cards for fare payment
 - Magnetic credit cards in fareboxes (e.g., Nashville)
 - Contactless credit/debit cards at faregates or fareboxes (e.g., UTA, NYMTA and PATH/NJT pilots)

- Use of cell phones for fare payment (NFC)
 - Chip-based or smart card-enabled phones (e.g., SF, NYC, London, Tokyo, S. Korea)
Example: Octopus (Hong Kong)

- Smart card-based regional fare payment program: 8 bus, rail and ferry operators
- Created by consortium of operators in 1996
- Used by 95% of HK population; more than 10 m daily transactions
- Card can also be used for various purposes (e.g., convenience stores, supermarkets, fast food restaurants, parking meters/lots, telephone calls)
Example: Oyster (London)

- Smart card-based regional fare payment program
- Privately financed and operated (DBOM contract); 30 banks involved
- “Best fare” arrangement (i.e., daily “capping”)
- Transit application added to credit cards (Barclaycard “One Pulse” card)
- NFC (cell phone) use has been tested
- Non-transit applications envisioned including parking, school services, electronic benefits, retail/loyalty programs
Example: Charlie Card/Ticket (Boston)

- MBTA AFC program
 - Newly designed validating fareboxes
 - New faregates and TVMs
- Charlie Card – smart card
 - Period pass (employer-based autoload)
 - Stored value (lower fare than with Charlie Ticket or cash)
- Charlie Ticket – magnetic farecard
 - Stored value
 - Change card (from farebox)
- 2.7m Charlie Cards distributed (1.6m have been used); 68% of boardings done using Charlie Card
Example: Chicago Card

- CTA smart card program
- Initially, lower fare (rail) with smart card than with magnetic card, and lower fare (bus) with smart or magnetic card than with cash; as of 1/09, lower fare bus only
- Pilot test in 2000
- Introduced Chicago Card Plus in 2004 -- account-based system
 - Rider sets up credit card account; value debited from account when card used
 - No actual value (or pass) on card
Example: Clipper (SF Bay Area)

- Regional smart card-based program: plan to ultimately link 26 or more operators
- Currently called TransLink, but changing name to Clipper
- Pilot completed with 6 operators July 2002
- Currently operational at 5 operators
- Uses dual interface cards, to allow for future multiapplication arrangements (e.g., parking, telephones, universities)
Example: SmarTrip (Washington area)

- Regional smart card-based program for Washington-Baltimore-Northern VA region
- Initiated by WMATA for Metrorail and parking in 1999
- Rider pays $5 for card and registers card – for replacement if lost/stolen
- Multiapplication pilots with Citi, GSA
- Smart Benefits – automated downloading of employer benefits
Fare policy affects all aspects of transit system: administration, finance, customer service, marketing, operations, planning.

Fare policy needs to balance competing goals (e.g., ridership vs. revenue, simplicity vs. equity).

Most fare decisions made in response to specific problem -- or introduction of new technology or service.

Broader context for fare policy and fare collection strategies in recent years:
- Increase in equity concerns/complaints
- Changing markets, new partnership opportunities
- Focus on seamless regional travel
- Convergence of transit and non-transit payment technologies (e.g., acceptance of contactless credit/debit cards and cell phones for transit payment)