Outline

- Timetable Development
- Fleet Size Calculation
- Vehicle Scheduling

Timetable Development

If we have N departures in the peak period:

- **Equal headway solution**
 \[H = \frac{\text{Peak Period Duration}}{N} \]

- **Balanced load solution**
 \[\text{Load} = \frac{\text{Total Passenger Flow}}{N} \]

More vehicles might be required for a balanced load solution.

Fleet Size Required

Salzborn's Fleet Size Theorem

Given:

- $l(k, t, s) = \#$ of departures from terminal k by time t following schedule s
- $a(k, t, s) = \#$ of arrivals at terminal k by time t following schedule s

and:

- $d(k, t, s) = l(k, t, s) - a(k, t, s)$

 deficit function at terminal k at time t following schedule s

Assumptions

- no trip shifting
- no deadheading (to balance deficit among terminals)
Fleet Size Required

Salzborn’s Fleet Size Theorem

Then:

\[N(s) = \sum_{k \in K} \max_t (d(k, t, s)) \]

Where \(K \) is the number of terminals.

Vehicle Scheduling Problem

Objective

- Define vehicle blocks (sequences of revenue and non-revenue activities for each vehicle) covering all trips so as to:
 - minimize fleet size
 - minimize non-revenue time and mileage

Observation

- These are proxies for cost, but a large portion of cost will depend on crew duties which are unknown at this stage of solution.

The deficit function, or minimum required fleet size, may be reduced by:

- shifting departure and/or arrival times
- adding deadhead trips between terminals

Input

- A set of vehicle revenue trips to be operated, each characterized by
 - starting point and time
 - ending point and time
- Possible layover arcs between the end of a trip and the start of a (later) trip at the same location
- Possible deadhead arcs connecting
 - depot(s) to trip starting points
 - trip ending points to depot(s)
 - trip ending points to trip starting at a different point
Vehicle Scheduling Problem

Observations

- there are many feasible but unattractive deadhead and layover arcs, so it is best to generate only plausible non-revenue arcs
- layover time affects service reliability, so set minimum layover (recovery) time

Variations

- each vehicle restricted to a single line vs. interlining permitted
- single depot vs. multi-depot
- vehicle fleet size constrained at depot level
- routes (trips) assigned to specific depot
- multiple vehicle types

Time-Space Network Representation

- revenue arc
- layover arc
- deadhead arc

Depot

Route 1

A₁ B₁

Route N

Aₙ Bₙ

(time of day)

Depot

(time of day)

Depot
The vehicle scheduling problem can be modelled as a *minimum cost network flow problem*, with arcs representing trips.

- Arcs have lower and upper bound constraints on flow
 - revenue arc $l = 1, u = 1$
 - layover arc $l = 0, u = 1$
 - deadhead arc $l = 0, u = 1$

- Arcs have cost
 - revenue arc cost irrelevant
 - layover arc driver cost of extra layover time
 - deadhead arc driver & vehicle cost of deadhead
Mathematical Modelling: Network Flows

- **Vehicle Scheduling Problem (VSP)**
 - find a set of feasible vehicle blocks such that
 - each trip in the timetable is covered exactly once
 - total cost is minimized
 - layover arcs
 - deadhead arcs
 - maximum block length
 - flow conservation
 - significant cost reductions with interlining and trip shifting heuristics
- **Single Depot Vehicle Scheduling Problem (SDVSP)**
 - for smaller agencies
 - solvable in polynomial time (minimum cost network flow)
- **Multidepot Vehicle Scheduling Problem (MDVSP)**
 - for large agencies
 - (integer multicommodity flow)
 - NP-hard (trip-depot compatibility constraints)
 - exact algorithms exist, but heuristics are used in practice
 - SDVSP used to find suboptimal solution, or as a sub-problem

Heuristic Approaches

1) Define compatible trips at same terminal k such that trips i and j are compatible if and only if:
 - $M_k < t_{ij} - t_{ei} < 2D_k$

 where
 - t_{ij} = starting time for trip j
 - t_{ei} = ending time for trip i
 - M_k = minimum recovery/layover time at terminal k
 - D_k = deadhead time from terminal k to depot

2) Apply restricted first-in-first-out rules at each terminal
 - **Step a)** Start with (next) earliest arrival at terminal; if none, go to step (d)
 - **Step b)** Link to earliest compatible trip departure; if none, return vehicle to depot and return to step (a)
 - **Step c)** Check vehicle block length against constraint:
 i) if constraining, return vehicle to depot and return to step (a)
 ii) otherwise, return to step (b) with new trip arrival time
 - **Step d)** Serve all remaining unlinked departures from depot

Network Representation (MDVPS)

- Conservation of flow at depots

© Springer International Publishing AG. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Single Route Scheduling Practice

<table>
<thead>
<tr>
<th></th>
<th>AM Peak Period</th>
<th>Base Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Headways</td>
<td>6:00 - 9:00</td>
<td>30 min</td>
</tr>
<tr>
<td>Scheduled Trip Time</td>
<td>A→B or B→A</td>
<td>40 min</td>
</tr>
<tr>
<td>Minimum Layover Time</td>
<td>10 min</td>
<td>10 min</td>
</tr>
</tbody>
</table>

Dominant direction of travel in AM Peak is A→B

Results of earlier planning and scheduling analysis:
Timetable and Vehicle Block Development

<table>
<thead>
<tr>
<th>Veh #</th>
<th>Depart A</th>
<th>Arrive B</th>
<th>Depart B</th>
<th>Arrive A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x</td>
<td>6:00</td>
<td>6:40</td>
<td>6:50</td>
<td>7:30</td>
</tr>
<tr>
<td>6:20</td>
<td>7:00</td>
<td>7:10</td>
<td>7:50</td>
<td></td>
</tr>
<tr>
<td>6:40</td>
<td>7:20</td>
<td>7:30</td>
<td>8:10</td>
<td></td>
</tr>
<tr>
<td>7:00</td>
<td>7:40</td>
<td>7:50</td>
<td>8:30</td>
<td></td>
</tr>
<tr>
<td>7:20</td>
<td>8:00</td>
<td>8:10</td>
<td>8:50</td>
<td></td>
</tr>
<tr>
<td>7:40</td>
<td>8:20</td>
<td>8:30</td>
<td>9:10</td>
<td></td>
</tr>
<tr>
<td>8:00</td>
<td>8:40</td>
<td>8:50</td>
<td>9:30</td>
<td></td>
</tr>
<tr>
<td>8:20</td>
<td>9:00</td>
<td>9:15</td>
<td>9:50</td>
<td></td>
</tr>
<tr>
<td>8:40</td>
<td>9:20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:00</td>
<td>9:35</td>
<td>9:45</td>
<td>10:20</td>
<td></td>
</tr>
<tr>
<td>9:30</td>
<td>10:05</td>
<td>10:15</td>
<td>10:50</td>
<td></td>
</tr>
<tr>
<td>10:00</td>
<td>10:35</td>
<td>10:45</td>
<td>11:20</td>
<td></td>
</tr>
<tr>
<td>10:30</td>
<td>11:05</td>
<td>11:15</td>
<td>11:50</td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td>11:35</td>
<td>11:45</td>
<td>12:20</td>
<td></td>
</tr>
</tbody>
</table>

x = pull out (from depot) y = pull in (back to depot)
Timetable and Vehicle Block Development

<table>
<thead>
<tr>
<th>Veh #</th>
<th>Depart A</th>
<th>Arrive B</th>
<th>Depart B</th>
<th>Arrive A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x</td>
<td>6:00</td>
<td>6:40</td>
<td>6:50</td>
<td>7:30</td>
</tr>
<tr>
<td>6:20</td>
<td>7:00</td>
<td>7:10</td>
<td>7:50</td>
<td></td>
</tr>
<tr>
<td>6:40</td>
<td>7:20</td>
<td>7:30</td>
<td>8:10</td>
<td></td>
</tr>
<tr>
<td>7:00</td>
<td>7:40</td>
<td>7:50</td>
<td>8:30</td>
<td></td>
</tr>
<tr>
<td>7:20</td>
<td>8:00</td>
<td>8:10</td>
<td>8:50</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7:40</td>
<td>8:20</td>
<td>8:30</td>
<td>9:10</td>
</tr>
<tr>
<td>8:00</td>
<td>8:40</td>
<td>8:50</td>
<td>9:30</td>
<td></td>
</tr>
<tr>
<td>8:20</td>
<td>9:00</td>
<td>9:15</td>
<td>9:50</td>
<td></td>
</tr>
<tr>
<td>8:40</td>
<td>9:20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:00</td>
<td>9:35</td>
<td>9:45</td>
<td>10:20</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>9:30</td>
<td>10:05</td>
<td>10:15</td>
<td>10:50</td>
</tr>
<tr>
<td>10:00</td>
<td>10:35</td>
<td>10:45</td>
<td>11:20</td>
<td></td>
</tr>
<tr>
<td>10:30</td>
<td>11:05</td>
<td>11:15</td>
<td>11:50</td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td>11:35</td>
<td>11:45</td>
<td>12:20</td>
<td></td>
</tr>
</tbody>
</table>

x = pull out (from depot)
y = pull in (back to depot)
Timetable and Vehicle Block Development

<table>
<thead>
<tr>
<th>Veh #</th>
<th>Depart A</th>
<th>Arrive B</th>
<th>Depart B</th>
<th>Arrive A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x</td>
<td>6:00</td>
<td>6:40</td>
<td>6:50</td>
<td>7:30</td>
</tr>
<tr>
<td>2x</td>
<td>6:20</td>
<td>7:00</td>
<td>7:10</td>
<td>7:50</td>
</tr>
<tr>
<td>3x</td>
<td>6:40</td>
<td>7:20</td>
<td>7:30</td>
<td>8:10</td>
</tr>
<tr>
<td>4x</td>
<td>7:00</td>
<td>7:40</td>
<td>7:50</td>
<td>8:30</td>
</tr>
<tr>
<td>1</td>
<td>7:20</td>
<td>8:00</td>
<td>8:10</td>
<td>8:50</td>
</tr>
<tr>
<td>2y</td>
<td>8:00</td>
<td>8:40</td>
<td>8:50</td>
<td>9:30</td>
</tr>
<tr>
<td>3</td>
<td>8:20</td>
<td>9:00</td>
<td>9:15</td>
<td>9:50</td>
</tr>
<tr>
<td>4y</td>
<td>8:40</td>
<td>9:20</td>
<td>9:35</td>
<td>10:20</td>
</tr>
<tr>
<td>1</td>
<td>9:00</td>
<td>9:35</td>
<td>9:45</td>
<td>10:20</td>
</tr>
<tr>
<td>3</td>
<td>10:00</td>
<td>10:35</td>
<td>10:45</td>
<td>11:20</td>
</tr>
<tr>
<td>5</td>
<td>10:30</td>
<td>11:05</td>
<td>11:15</td>
<td>11:50</td>
</tr>
<tr>
<td>1</td>
<td>11:00</td>
<td>11:35</td>
<td>11:45</td>
<td>12:20</td>
</tr>
</tbody>
</table>

x = pull out (from depot)
y = pull in (back to depot)

Timetable and Vehicle Block Development

Block 1: Depot - A (6:00) - B (6:50) - A (7:40) - B (8:30) - A (9:30) - B (10:15) - A (11:00) - B (11:45) - . . .

Block 2: Depot - A (6:20) - B (7:10) - A (8:00) - B (8:50) - Depot

Block 3: Depot - A (6:40) - B (7:30) - A (8:20) - B (9:15) - A (10:00) - B (10:45) - . . .

Block 4: Depot - A (7:00) - B (7:50) - A (8:40) - Depot

Block 5: Depot - A (7:20) - B (8:10) - A (9:00) - B (9:45) - A (10:30) - B (11:15) - . . .