Bus and Rail Corridor Service Options

Outline
- Corridor Objectives and Strategies
- Express
- Local
- Limited Stop Overlay on Local Service
- Deadhead
- Metro Rail in Santiago, Chile

Strategies

- Express Service
 - Downtown orientation
 - Zonal Express
 - Limited Stops on Express Segment
- Local Service
 - Short Turns/Lines
 - Restricted Zonal
 - Semi-Restricted Zonal
 - Limited Stop Zonal
- Light Direction Strategies
 - Complete Deadheading
 - Partial Deadheading

Corridor Design Objectives

- Design Objectives
 - To reduce cost for providing existing level of service, or
 - To improve the level of service without increasing resources on existing, longer high-frequency corridors
- Operational Objectives
 - Increase the operating speed
 - Reduce the vehicle miles of service
 - Reduce unnecessary slack time at terminals
 - Maintain high, uniform vehicle loadings on all segments
- Issues
 - Service Quality Impacts
 - Changes in wait time, walk distance, and need to transfer
 - Ridership Changes
 - What ridership changes will result from level of service impacts?

Local and Express Service: Local

<table>
<thead>
<tr>
<th>SCHEDULE Route 1</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>CBD</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:00 A.M.</td>
<td>7:08</td>
<td>7:15</td>
<td>7:25</td>
<td>7:32</td>
<td>7:45</td>
<td></td>
</tr>
<tr>
<td>7:10</td>
<td>7:18</td>
<td>7:25</td>
<td>7:35</td>
<td>7:42</td>
<td>7:55</td>
<td></td>
</tr>
<tr>
<td>7:20</td>
<td>7:28</td>
<td>7:35</td>
<td>7:45</td>
<td>7:52</td>
<td>8:05</td>
<td></td>
</tr>
<tr>
<td>7:30</td>
<td>7:38</td>
<td>7:45</td>
<td>7:55</td>
<td>8:02</td>
<td>8:15</td>
<td></td>
</tr>
<tr>
<td>7:40</td>
<td>7:48</td>
<td>7:55</td>
<td>8:05</td>
<td>8:12</td>
<td>8:25</td>
<td></td>
</tr>
<tr>
<td>7:50</td>
<td>7:58</td>
<td>8:05</td>
<td>8:15</td>
<td>8:22</td>
<td>8:35</td>
<td></td>
</tr>
<tr>
<td>8:00</td>
<td>8:08</td>
<td>8:15</td>
<td>8:25</td>
<td>8:32</td>
<td>8:45</td>
<td></td>
</tr>
</tbody>
</table>
Local and Express Service: Express

SUBURBS

A B

C D E

CBD

Zonal Express Service

SUBURBS

A

B

Non-stop express

C D

CBD

Local and Express Service: Express

SUBURBS

A

B

C

D

E

CBD

Issues In Designing Express Services

- Downtown Routing
 - Minimize time on local streets
- Adding Stops to Express Portions
 - Minimize impact on capacity and running time
- Reverse Commuting
 - Maximize potential for reverse commuting traffic
- Fares
 - What fare premium is appropriate?
- Local Service Interaction
 - Is parallel local service viable?
 - Is express time advantage and frequency sufficient to attract (almost) all downtown riders?

Zonal Express Service Zonal Express Service in the Sheridan Road corridor (simplified)

Local Service

80 buses
Zonal Express Service in the Sheridan Road corridor (simplified)

- **Conventional Express Service**: 72 buses
- **Zonal Express Service**: 47 buses

Schedule - Inbound

<table>
<thead>
<tr>
<th>Time</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>CBD</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:00</td>
<td>7:08</td>
<td>7:15</td>
<td>7:18</td>
<td>7:25</td>
<td>7:32</td>
<td>7:45</td>
<td></td>
</tr>
<tr>
<td>7:25</td>
<td></td>
<td>7:32</td>
<td>7:39</td>
<td>7:52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:15</td>
<td>7:23</td>
<td>7:30</td>
<td>7:40</td>
<td>7:47</td>
<td>8:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:40</td>
<td></td>
<td>7:47</td>
<td>7:54</td>
<td>8:07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:30</td>
<td>7:38</td>
<td>7:45</td>
<td>7:48</td>
<td>7:55</td>
<td>8:02</td>
<td>8:15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7:55</td>
<td>8:02</td>
<td>8:09</td>
<td>8:22</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Short-Turning Local Service

Schedule - Inbound

<table>
<thead>
<tr>
<th>Time</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>CBD</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:00</td>
<td>7:08</td>
<td>7:15</td>
<td>7:18</td>
<td>7:25</td>
<td>7:32</td>
<td>7:45</td>
<td></td>
</tr>
<tr>
<td>7:25</td>
<td></td>
<td>7:32</td>
<td>7:39</td>
<td>7:52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:15</td>
<td>7:23</td>
<td>7:30</td>
<td>7:40</td>
<td>7:47</td>
<td>8:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:40</td>
<td></td>
<td>7:47</td>
<td>7:54</td>
<td>8:07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:30</td>
<td>7:38</td>
<td>7:45</td>
<td>7:48</td>
<td>7:55</td>
<td>8:02</td>
<td>8:15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7:55</td>
<td>8:02</td>
<td>8:09</td>
<td>8:22</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Restricted Zonal Local Service

Schedule - Route 1

<table>
<thead>
<tr>
<th>Time</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>CBD</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:00</td>
<td>7:08</td>
<td>(7:15)*</td>
<td>(7:24)</td>
<td>(7:30)</td>
<td>7:42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:15</td>
<td>7:23</td>
<td>(7:30)</td>
<td>(7:39)</td>
<td>(7:45)</td>
<td>7:57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:30</td>
<td>7:38</td>
<td>(7:45)</td>
<td>(7:54)</td>
<td>(8:00)</td>
<td>8:12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Schedule - Route 2

<table>
<thead>
<tr>
<th>Time</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>CBD</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:10</td>
<td>7:20</td>
<td>(7:27)*</td>
<td></td>
<td></td>
<td>7:39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:22</td>
<td>7:32</td>
<td>(7:39)</td>
<td></td>
<td></td>
<td>7:51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:34</td>
<td>7:44</td>
<td>(7:51)</td>
<td></td>
<td></td>
<td>8:03</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Restricted Zonal Local Service

Schedule - Route 3

<table>
<thead>
<tr>
<th>Time</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>CBD</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:25</td>
<td></td>
<td>7:39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:35</td>
<td></td>
<td>7:49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:45</td>
<td></td>
<td>8:59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inbound buses do not stop except to let passengers alight; boarding prohibited.
Outbound buses do not stop except to let passengers board; alighting prohibited.
Wilshire Boulevard Corridor

Santa Monica
Beverly Hills
Los Angeles CBD

Local Service
Limited Stop Service

Route 308

Routes 20, 21, 22

Semi-Restricted Zonal Local Service (Inbound only)

- Buses stop only to allow passengers to alight; once stopped, waiting passengers may board.

SCHEDULE - Inbound

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>CBD</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:00 AM</td>
<td>7:08</td>
<td>(7:15)*</td>
<td>(7:24)</td>
<td>(7:30)*</td>
<td>7:42 Route 1</td>
</tr>
<tr>
<td>7:10</td>
<td>7:20</td>
<td>(7:27)*</td>
<td>7:39 Route 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:25</td>
<td>7:39 Route 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:15</td>
<td>7:23</td>
<td>(7:30)*</td>
<td>(7:39)*</td>
<td>(7:45)*</td>
<td>7:57 Route 1</td>
</tr>
<tr>
<td>7:22</td>
<td>7:32</td>
<td>(7:39)*</td>
<td>7:51 Route 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:35</td>
<td>7:49 Route 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:45</td>
<td>8:59 Route 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:30</td>
<td>7:38</td>
<td>(7:45)</td>
<td>(7:54)</td>
<td>(8:00)*</td>
<td>8:12 Route 1</td>
</tr>
<tr>
<td>7:34</td>
<td>7:44</td>
<td>(7:51)*</td>
<td>8:03 Route 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:55</td>
<td>8:09 Route 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Limited Stop Zonal Local Service (Inbound only)

- Designated Stops

SCHEDULE - Inbound

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>CBD</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:00 AM</td>
<td>7:12</td>
<td>---</td>
<td>7:19</td>
<td>---</td>
<td>7:26</td>
<td>---</td>
<td>7:33</td>
<td>---</td>
<td>7:40 Route 1</td>
</tr>
<tr>
<td>7:13</td>
<td>7:17</td>
<td>7:22</td>
<td>7:27</td>
<td>7:31</td>
<td>---</td>
<td>7:38</td>
<td>---</td>
<td>7:45 Route 2</td>
<td></td>
</tr>
<tr>
<td>7:30</td>
<td>7:35</td>
<td>7:40</td>
<td>7:45</td>
<td>7:50 Route 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:15</td>
<td>7:27</td>
<td>---</td>
<td>7:34</td>
<td>---</td>
<td>7:41</td>
<td>---</td>
<td>7:48</td>
<td>---</td>
<td>7:55 Route 1</td>
</tr>
<tr>
<td>7:28</td>
<td>7:32</td>
<td>7:37</td>
<td>7:42</td>
<td>7:46</td>
<td>---</td>
<td>7:53</td>
<td>---</td>
<td>8:00 Route 2</td>
<td></td>
</tr>
<tr>
<td>7:45</td>
<td>7:50</td>
<td>7:55</td>
<td>8:00</td>
<td>8:05 Route 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Limited Stop Overlay on Local Service: Research Objectives

- Establish guidelines for the addition of limited-stop service
- Create a procedure and model for evaluation and design
- Apply the model to CTA case studies

Key Elements of Limited-Stop Service Design

- Stop Reduction
- Running Time Savings
 - Dwell times
 - Traffic and traffic signal delay
- Frequency split
- Resources: neutral or increased?

Model Overview

- Model Assumptions
 - Demand is fixed (or adjusted using frequency elasticity model)
 - Local Stop Spacing is fixed
 - Total Dwell Time for the route does not change based on the stop spacing, frequency configuration, or boardings
 - Scorfia’s update relaxes these assumptions and assigns demand probabilistically.
- Makes use of AVL and APC data to determine running times and the O-D demand matrix
- Evaluates a specific user defined stop spacing and headway configuration
- Calculates travel time components for each O-D pair

CTA Limited-Stop Routes

- 3/X3, 4/X4, 49/X49, 55/X55, 80/X80, 9/X9, 54A/54B/X54
- Average Route Length: ~8 miles; range: 7.5 to 16 miles
- Stop Reduction: 60-70% of existing stops
- Run Time reductions range from 13-26%
- Frequency split: 50-60% local service initially; based on MIT research, changed to 60-67% express, maintaining at least 15-minute headway on local service

Assignment

- Stop Choice (can be modeled based on user surveys or smart card home address information)
- Route Choice (at combined stops only)
- Local captive, choice, and limited-stop only riders
- Based on minimum weighted travel time
 - Access Time=3, Wait Time=2, In Vehicle Time=1
 (Loosely based on the Chicago Area Transportation Study)

Calculates evaluation measures

- Net passenger minutes of total travel time, number of limited-stop only riders
Findings

- Success of limited-stop service depends on
 - Running time savings
 - Frequency split between local and limited-stop service
 - Demand pattern: trip end concentration and trip length
 - Large number of limited-stop-only or choice riders
- Eliminating stops affects access time: the number of limited-stop only riders decreases as stop spacing increases
- Eliminating stops on CTA routes has had moderate impacts (13-26%) on running times
- Potential Strategy for Limited-Stop Service
 - Increase stop spacing while maintaining low frequency service on the local

Key Factors in Determining the Potential Benefit of Route Redesign of a Corridor

<table>
<thead>
<tr>
<th>Overall Trunk Frequency</th>
<th>Short-Turn</th>
<th>Restricted Zonal</th>
<th>Semi-Restricted Zonal</th>
<th>Limited-Stop Zonal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below 1.7 (f_{\text{min}})^*</td>
<td>valuable in AM</td>
<td>none</td>
<td>none</td>
<td>unnecessary in AM</td>
</tr>
<tr>
<td>1.7 (f_{\text{min}}) - 2.0 (f_{\text{min}})</td>
<td>vital in PM</td>
<td>none</td>
<td>none</td>
<td>valuable in PM</td>
</tr>
<tr>
<td>2 (f_{\text{min}}) - 4 (f_{\text{min}})</td>
<td>none</td>
<td>strong</td>
<td>moderate</td>
<td>strong</td>
</tr>
<tr>
<td>Above 4 (f_{\text{min}})</td>
<td>none</td>
<td>considerable</td>
<td>moderate</td>
<td>considerable</td>
</tr>
</tbody>
</table>

Corridor Length

- Below 2 miles: NOT A CANDIDATE FOR REDESIGN
- 2-4 miles: MILD POTENTIAL
- 4-6 miles: CONSIDERABLE POTENTIAL
- 6-8 miles: HIGH POTENTIAL
- Above 8 miles: POTENTIAL

*\(f_{\text{min}}\) = minimum acceptable frequency for a peak period radial route

Deadheading Strategies

Strategies

- Deadhead all vehicles on route:
 - Possible with one (or more) routes of short turn or zonal route system
- Deadhead some vehicles on route
 - Deadhead every other bus (or 2 out of every 3) with remainder in service

Issues

- Can a vehicle be saved by deadheading?
- Will there be adverse public reaction?
 - easier if by different route

General Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Short-Turn</th>
<th>Restricted Zonal</th>
<th>Semi-Restricted Zonal</th>
<th>Limited-Stop Zonal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Need for schedule coordination and strict adherence</td>
<td>valuable in AM</td>
<td>none</td>
<td>none</td>
<td>unnecessary in AM</td>
</tr>
<tr>
<td>Reliance on overtaking</td>
<td>none</td>
<td>strong</td>
<td>moderate</td>
<td>strong</td>
</tr>
<tr>
<td>wait time</td>
<td>higher in outer part lower in inner</td>
<td>higher</td>
<td>higher in outer part lower in inner</td>
<td>higher in outer part lower in inner (key stops)</td>
</tr>
<tr>
<td>in-vehicle time reduction</td>
<td>none</td>
<td>considerable</td>
<td>moderate</td>
<td>considerable</td>
</tr>
<tr>
<td>typical walk distance impact to peak direction travelers</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>up by 0.2 mi. for some passengers</td>
</tr>
<tr>
<td>difficulty in public comprehension</td>
<td>little</td>
<td>greatest</td>
<td>considerable</td>
<td>moderate</td>
</tr>
<tr>
<td>ideal corridor length</td>
<td>short</td>
<td>long</td>
<td>medium-long</td>
<td>long</td>
</tr>
<tr>
<td>fraction of local (non-CBD) travel</td>
<td>moderate to high</td>
<td>small</td>
<td>moderate</td>
<td>moderate to high</td>
</tr>
<tr>
<td>outer segment volume</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>any</td>
</tr>
</tbody>
</table>
Strategies Best Suited to Different Ratios of Peak Volume to Uptown Boardings

<table>
<thead>
<tr>
<th>Strategy</th>
<th>25</th>
<th>50</th>
<th>75</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restricted zonal</td>
<td></td>
<td></td>
<td>60</td>
<td>80</td>
</tr>
<tr>
<td>Semi-Restricted zonal</td>
<td>40</td>
<td>60</td>
<td>85</td>
<td>100%</td>
</tr>
<tr>
<td>Limited-Stop zonal</td>
<td>30</td>
<td>40</td>
<td>80</td>
<td>90%</td>
</tr>
<tr>
<td>Overlapping zonal</td>
<td>25</td>
<td>50</td>
<td>80%</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- range in which strategy can be effectively operated
- range in which strategy is likely to be most promising

1 For inbound direction. When the peak direction is outbound, use the ratio of peak volume to uptown alightings (PV/UA). The same figures apply.
2 Can be operated inbound only.

Can this happen in Metro too?

Diagnostic
- Passenger Congestion (boarding and alighting)
- Vehicle Congestion (entering stops)
- Bunching affecting waiting times
- Unreliability affecting passengers
- Unreliability affecting operators
- Crowdedness

Opportunity for improving the level of service significantly in a cost-effective way.

Metro of Santiago, March 2007

What can we do cost-efficiently?
Capacity needs to be increased.

Skip-Stop Operation

Objectives
- Decrease running times
- Increase frequency at key stations
- Minimize required transfers
 - Analyze the OD matrix

Constraints
- Tracks prevent overtaking
- ATO/ATP enables skipping stops safely and quickly
Skip-Stop Operation: Results

- Increased frequency by 2 trains per hour
- Decreased operations cost by skipping stations
 - decreased electric energy consumption due to less frequent acceleration
 - decreased braking (less mechanical wear)

<table>
<thead>
<tr>
<th></th>
<th>kW hr / year</th>
<th>USD / year</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line 2</td>
<td>3,352,654</td>
<td>351,568</td>
<td>6</td>
</tr>
<tr>
<td>Line 4</td>
<td>1,640,000</td>
<td>171,936</td>
<td>4</td>
</tr>
<tr>
<td>Line 5</td>
<td>2,420,000</td>
<td>253,699</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>7,412,654</td>
<td>777,203</td>
<td>5</td>
</tr>
</tbody>
</table>

- Decreased running time
 - 44 to 36 minutes in Line 4
 - 26 to 24 minutes in Line 5

- Improved ride comfort
- Improved perception of service quality
 - 59% believe their trips are faster
 - 71% have a favorable view of the scheme

Adapted from slides by Prof. J.C. Muñoz (PUC)
1.258J / 11.541J Public Transportation Systems
Spring 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.