Fare Policy, Structure, and Technology

- Policy objectives
- Issues that agencies face
- Fare structure
- Demand response to fare changes
- Fare technology

Fare Policy Objectives

- Fund operations (at least partially)
 - fare recovery ratios (based on 2014 NTD data)
 - 0.14 - 0.78 (average 0.42) for heavy rail
 - 0.13 - 0.56 (average 0.27) for light rail
 - 0.01 - 1.50 (average 0.18) for bus
- Keep transit affordable and promote social equity
- Support growth of demand for transit
- Make fare structure easy to communicate
- Reduce fare system costs
 - fare collection
 - maintenance of equipment
 - customer service

Fare Policy Intersects With Other Areas

- Finance
 - funding operational expenses
- Operations
 - fare technology affects dwell times, cycle time, reliability
 - some fare structures require fare inspection
 - maintenance of equipment
- Public Support
 - politicians may promise not raising fares
 - difficulty gathering support to raise fares to improve service quality
 - labor’s push for higher wages may require raising fares
- Administration
 - fare technology
 - fare policy and equity analysis
 - revenue sharing across jurisdictions (funding formula)
- Marketing
- Customer Service
 - fare structure and technology are among the first things a customer has to learn before taking transit

Issues that Agencies Face

- Fare recovery ratios
 - typically one third of operating costs, but it varies
 - rare to make a profit systemwide
- How often to raise fares
 - reactive
 - annually, with inflation
- Gathering and maintaining political support
- Raising base fares vs. changing the relative cost of passes and discounted fare products
- Investing in new fare technology
Fare Structure (Market Segmentation)

Flat Fare

Differentiated Fare
- Spatial
 - Zonal
 - Distance-based
- Temporal
 - Peak surcharge / off-peak discount
- Service
 - Bus vs. rail
 - Regular bus vs. express bus
- Socioeconomic
 - Students
 - Seniors
 - Disabled
 - Social Programs (needs-based subsidy)
- By willingness to pre-pay
 - Daily, weekly, 3 day, monthly passes

Fare Elasticities
- Fare elasticities can range from -1.0 to 0.0, but are more often closer to -0.40 or -0.30.
 - Rail elasticity is about half of bus, e.g. -0.20 or -0.15.
 - Off-peak elasticity is about double of off-peak, e.g. -0.50.
 - Demand for work trips is much less elastic, e.g. -0.10
 - There is higher demand for free transit than for very cheap transit.
- Raising fares is an effective instrument for increasing revenues, but not to increase demand.
- From a microeconomics perspective, fares should be higher for
 - longer trips
 - trips in more convenient, reliable, comfortable, and frequent modes
 - peak period trips
 - trips when other modes are inconvenient or costly
 - trips subsidized by third parties (government, businesses)

Transfer Pricing and Policy

Pay-as-you-go, Passes, and Capping
- Pay-as-you-go
 - cash
 - tickets and smartcards with balance
- Passes give a discount to frequent users
 - some fare revenue is derived from pass sales from customers that do not break even
- Passes increase convenience and reduce saliency
- Passes are sometimes subsidized
 - employers
 - universities
 - government (pre-tax benefit)
 - social programs, e.g. access to jobs
- Capping
 - pay-as-you-go up to daily, weekly, or monthly limit
 - best price guarantee
 - simplifies customer communication
Fare Policy Demand Analysis

- Traditional 4-step modeling not usually appropriate
 - insufficient spatiotemporal resolution
 - total demand does not change much in a relatively short planning horizon
- Fare elasticity analysis is usually simplistic
 - Multiple simultaneous considerations
 - mode alternatives
 - fare products - pass vs. pay-as-you-go
 - costs - not just in absolute terms, but relative to all alternatives
 - Exogenous factors are not controlled for
 - fuel prices
 - employment and residential development
 - tax policy
 - sociodemographics
 - new modes, e.g. transportation network companies (TNCs)

Communication of Fare Policy

- To the public
 - agency website
 - near fare vending machines
 - customer service booths
- For a fare change
 - agency website
 - flyers and posters
 - public hearings
- Via APIs or standard feeds, for trip planners
 - some standards exist, but they are not widely adopted
 - GTFS fare_attributes and fare_rules tables
 - some agency’s fare rules are complex and cannot be described with existing standards
 - no standard API for determining price of a hypothetical trip

Partnerships

- Employer partnerships - MIT AccessMyCommute
 - Charlie chip embedded in employee badge
 - Marketed as an unlimited use pass
 - Billed on a unit cost per ride
 - Reduces parking cost (capital, maintenance) for employer
- Other transportation providers - Chicago Transit Authority
 - PACE - regional bus
 - Metra - commuter rail
 - Divvy - bike share
- Mobility as a Service (MaaS)
 - monthly payment for a bundle of transportation options
 - e.g. unlimited use transit pass, 5 bike rides, 5 TNC rides

Fare Control

- Tap In
- Tap In + Tap Out
 - may require internal fare vending machine
 - may require additional station attendants
 - may allow negative balance
 - useful for zonal systems or for revenue sharing across agencies
- Proof of Payment
 - requires significant inspection
 - higher fare evasion rate
Smartcards

- Small computer inside each card
- Harder to break security
- Enables more complex fare structures
- Faster boarding and higher gatebank throughput
- Account registration
 - balance protection
 - autoload
- Better data for analysis and planning
- Embeddable in employee / student badges
- More expensive than tickets
 - smart tickets are cheaper
- Proprietary systems, multiple standards
 - move towards open-source hardware and specifications
- Integration across agencies of a region is possible but challenging
- Enables retail payment. Examples in Japan and China.

Contactless Bank Cards (Open Payment)

- Transit agencies would prefer not having to deal with the complexities and costs of fare collection
 - outsource to banks and credit card companies
- Credit card companies specialize in payment
- Contactless bank cards are secure
- Cards can be used directly for payment or as tokens
 - compatible with complex fare structures
- Also enables payment with NFC smartphones
- Reduces fare collection cost
 - simplifies customer communication, even for tourist and occasional user
 - relies on open standards, so there is more competition in the market
 - outsources some aspects of customer service to banks
 - eliminates costs of creating and distributing smartcards
- Equity issue: access to the unbanked
 - agency can issue cards with pre-loaded balance
 - banks can offer free accounts
 - cards must be obtainable at many locations