Lecture 3

Contaminant Transport Mechanisms and Principles
BASIC DEFINITIONS

- **Ground surface**
- **Vadose zone, unsaturated zone**
- **Capillary fringe**
- **Water table**
- **Saturated zone**
- **Confining bed**
- **Below ground surface (BGS)**
- **Confined aquifer or artesian aquifer**
- **Water-table, phreatic, or unconfined aquifer**

Capillary fringe may be >200 cm in fine silt
In capillary fringe water is nearly saturated, but held in tension in soil pores
Contaminant concentrations:

- C_w, mg/L
 - concentration in water
- C_g, mg/L or ppmv
 - concentration in gas
- C_s, gm/kg
 - concentration in solids
PARTITIONING RELATIONSHIPS

Solid ↔ water

\[
\frac{C_s}{C_w} = K_d = \frac{\text{mg/kg solid}}{\text{mg/L water}}
\]

\(K_d = \text{partition coefficient}\)

Water ↔ vapor

\[
\frac{C_g}{C_w} = H = \frac{\text{mol/m}^3 \text{ air}}{\text{mg/m}^3 \text{ water}}
\]

\(H = \text{Henry’s Law constant}\)
HENRY’S LAW CONSTANT

H has dimensions: \(\text{atm m}^3 / \text{mol} \)

\(H' \) is dimensionless

\(H' = \frac{H}{RT} \)

\(R = \text{gas constant} = 8.20575 \times 10^{-5} \text{ atm m}^3/\text{mol °K} \)

\(T = \text{temperature in °K} \)
NOTE ON SOIL GAS CONCENTRATION

Soil gas is usually reported as:
ppmv = parts per million by volume

\[C_g \text{ (ppmv)} = \frac{C_g \text{ (mg/L)} \times 24,000 \text{ mL/mole}}{\text{molecular weight g/mole}} \]
VOLUME REPRESENTATION

Void volume, V_v

\[
\begin{align*}
\text{Gas volume, } V_g \\
\text{Water volume, } V_w \\
\text{Solid volume, } V_s
\end{align*}
\]

Total volume, V_T
VOLUME-RELATED PROPERTIES

Bulk density \(\rho_b = \frac{\text{mass of solids}}{\text{total volume}} \)

Porosity = \(n = \theta = \frac{V_V}{V_T} \)

Volumetric water content or water-filled porosity = \(\theta_w = \frac{V_W}{V_T} \)

Saturation = \(S = \frac{V_W}{V_V} \)

Gas-filled porosity = \(\theta_g \) (or \(\theta_a \)) = \(\frac{V_g}{V_T} \)

\(\theta_w + \theta_g = n \)
CONTAMINANT CONCENTRATION IN SOIL

Total mass in unit volume of soil:

\[C_T = \rho_b C_s + \theta_w C_W + \theta_g C_g \]

If soil is saturated, \(\theta_g = 0 \) and \(\theta_w = n \)

\[C_T = \rho_b C_s + n C_W \]
NOMENCLATURE FOR DARCY’S LAW

\[Q = K \ i \ A \]

- \(K \) = hydraulic conductivity
- \(i \) = hydraulic gradient = \(\frac{dh}{dL} \)
- \(A \) = cross-sectional area

Velocity of ground-water movement

\[u = \frac{Q}{n \ A} = \frac{q}{n} = \frac{K \ i}{n} = \text{average linear velocity} \]

\(n \ A \) = area through which ground water flows

\(q = \frac{Q}{A} = \text{Darcy seepage velocity} = \text{Specific discharge} \)

For transport, \(n \) is \(n_e \), effective porosity
Flowing ground water carries any dissolved material with it → Advective Flux

\[J_A = n \cdot u \cdot C \quad \text{mass / area / time} \]

= mass flux through unit cross section due to ground-water advection

n is needed since no flow except in pores
DIFFUSIVE FLUX

Movement of mass by molecular diffusion (Brownian motion) – proportional to concentration gradient

\[J_D = -D_0 \frac{\partial C}{\partial x} \]

in surface water

\(D_0 \) is molecular diffusion coefficient [L^2/T]
In porous medium, geometry imposes constraints:

\[J_D = -\tau \ D_0 \ n \ \frac{\partial C}{\partial x} = -D^* \ n \ \frac{\partial C}{\partial x} \]

\(\tau \) = tortuosity factor

\(D^* \) = effective diffusion coefficient

Factor \(n \) must be included since diffusion is only in pores.
TORTUOSITY

Solute must travel a tortuous path, winding through pores and around solid grains

Common empirical expression: \[\tau = \left(\frac{L}{L_e} \right)^2 \]

\(L \) = straight-line distance
\(L_e \) = actual (effective) path

\(\tau \approx 0.7 \) for sand
NOTES ON DIFFUSION

Diffusion is not a big factor in saturated groundwater flow – dispersion dominates diffusion.

Diffusion can be important (even dominant) in vapor transport in unsaturated zone.
MECHANICAL DISPERSION

A arrives first, then B, then C → mechanical dispersion
MECHANICAL DISPERSION

Viewed at micro-scale (i.e., pore scale) arrival times A, B, and C can be predicted.

Averaging travel paths A, B, and C leads to apparent spreading of contaminant about the mean.

Spatial averaging \rightarrow dispersion.
MECHANICAL DISPERSION

Dispersion can be effectively approximated by the same relationship as diffusion—i.e., that flux is proportional to concentration gradient:

\[J_M = -D_M n \frac{\partial C}{\partial x} \]

Dispersion coefficient, \(D_M = \alpha_L u \)

\(\alpha_L \) = longitudinal dispersivity (units of length)
TRADITIONAL VIEW OF HYDRODYNAMIC DISPERSION

ACTUAL OBSERVATIONS OF PLUMES

USGS Cape Cod Research Site

MONITORING WELL ARRAY
USGS MONITORING NETWORK

OBSERVED BROMIDE PLUME – HORIZONTAL VIEW

Significant longitudinal dispersion, but limited lateral dispersion
OBSERVED BROMIDE PLUME – VERTICAL VIEW

Vertical location of bromide tracer cloud at 33, 237, and 461 days after injection. Cloud locations defined by zones in which bromide concentration exceeded 1 mg/L.

Limited vertical dispersion
LONGITUDINAL DISPERSION VS. LENGTH SCALE

Lateral and vertical dispersivity

TRANSPORT EQUATION

Combined transport from advection, diffusion, and dispersion (in one dimension):

\[J = J_A + J_D + J_M \]

\[J = nuC - D \cdot n \frac{\partial C}{\partial x} - D_M n \frac{\partial C}{\partial x} \]

\[J = nuC - D_H \frac{\partial C}{\partial x} \]

\[D_H = D^* + D_M = \tau D_O + \alpha_L u \]

= hydrodynamic dispersion
Consider conservation of mass over control volume (REV) of aquifer.

REV = Representative Elementary Volume
REV must contain enough pores to get a meaningful representation (statistical average or model)
TRANSPORT EQUATION

Change in contaminant mass with time

\[\frac{\partial C_T}{\partial t} = -\nabla \cdot J \pm S / S \]

Flux in less flux out of REV

Sources and sinks due to reactions

\[\frac{\partial C_T}{\partial t} = -\frac{\partial J}{\partial x} \pm S / S \]

(1)

(2)
TRANSPORT EQUATION

\[C_T = \text{total mass (dissolved mass plus mass adsorbed to solid) per unit volume} = \rho_b C_S + n C \]

Note: \(W \) subscript dropped for convenience and for Consistency with conventional notation.

Substitute Equation 3 into Equation 2:

\[\frac{\partial}{\partial t} (\rho_b C_S) + \frac{\partial}{\partial t} (nC) = - \frac{\partial}{\partial x} \left(nuC - D_H n \frac{\partial C}{\partial x} \right) \pm \frac{S}{S} \]

↑ no solid phase in flux term
\[C_S = K_d \, C \text{ by definition of } K_d \]

Assume spatially uniform \(n, \rho_b, K_d, u, \text{ and } D_H \) and no S/S

\[
\left(\rho_b K_d + n\right) \frac{\partial C}{\partial t} = -nu \frac{\partial C}{\partial x} + nD_H \frac{\partial^2 C}{\partial x^2} \quad (5)
\]

\[
\frac{\partial C}{\partial t} = -\left(\frac{\rho_b K_d + n}{n}\right) \frac{\partial C}{\partial x} + \left(\frac{\rho_b K_d + n}{n}\right) \frac{\partial^2 C}{\partial x^2} \quad (6)
\]
"Retardation factor", R_d

$$\frac{\rho_b K_d + n}{n} = 1 + \frac{\rho_b K_d}{n} = R_d$$ \hspace{1cm} (7)

Substituting Equation 7 into Equation 6:

$$\frac{\partial C}{\partial t} = - \frac{u}{R_d} \frac{\partial C}{\partial x} + \frac{D_H}{R_d} \frac{\partial^2 C}{\partial x^2}$$ \hspace{1cm} (8)

Effect of adsorption to solids is an apparent slowing of transport of dissolved contaminants
Both u and D_H are slowed
Equation 8 can be solved with a variety of boundary conditions.

In general, equation predicts a spreading Gaussian cloud.
Spreading of a solute slug with time due to diffusion. A slug of solute was injected into the aquifer at time t_0 with a resulting initial concentration of C_0.

1-D SOLUTION OF TRANSPORT EQUATION

For instantaneous placement of a long-lasting source (for example, a spill that leaves a residual in the soil), solution is:

\[C(x, t) = \frac{C_0}{2} \text{erfc} \left(\frac{R_d x - ut}{\sqrt{4R_d D_H t}} \right) \]

Where \(C_0 = C(x=0, t) = \) constant concentration at source location \(x = 0 \)

Solution is a front moving with velocity \(u/R_d \)
The profile of a diffusing front as predicted by the complementary error function.

$x = \frac{ut}{R_d}$

Adapted from Fetter, C. W. *Contaminant Hydrogeology.*
Moving front of contaminant from constant source

\[C_0 = 10 \]
\[u = 1 \]
\[D_H = 0.1 \]
\[R_d = 1 \]
Effect of D_H on moving front of contaminant

- $t = 3$
- $u_t = 3$
- $D_H = 0.1$
- $D_H = 1$
- $C_0 = 10$
- $u = 1$
- $R_d = 1$

Concentration, $C(x,t)$

Distance, x
Effect of R_d on moving front of contaminant

- $t = 3$
- $u = 1$
- $D_H = 0.1$
- $C_0 = 10$
- $R_d = 2$
- $R_d = 1$

Concentration, $C(x,t)$

Distance, x
1-D SOLUTIONS

Transport of a Conservative Substance from Pulse and Continuous Sources

Dimensions

<table>
<thead>
<tr>
<th>1-D</th>
<th>1-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{M}, $\dot{\mathcal{M}}$ are instantaneous or continuous plane sources</td>
<td></td>
</tr>
<tr>
<td>\mathcal{M} [M/L^2]</td>
<td>$\dot{\mathcal{M}}$ [M/L^2T]</td>
</tr>
</tbody>
</table>

Pulse Input of Mass \mathcal{M}

$$ C = \frac{\mathcal{M}}{2n\pi^{1/2}t^{1/2}} \exp\left(-\frac{(x-vt)^2}{4D_t^2}\right) $$

- $x = 0 \rightarrow v$
- $t = 0$ to $t = t_i$

Continuous Input of Mass Per Unit Time $\dot{\mathcal{M}}$ Starting at Time $t = 0$

$$ C = \frac{\dot{\mathcal{M}}}{2nv} \text{erfc}\left(\frac{x-vt}{2\sqrt{D_t}t}\right) $$

- $x = 0 \rightarrow v$
- Mass input here
- Front at time t

Continuous Input of Mass Per Unit Time $\dot{\mathcal{M}}$ in Steady State

$$ C = \frac{\dot{\mathcal{M}}}{nv} \text{ (for } x > 0) $$

- $x = 0 \rightarrow v$
- Mass input here

2-D SOLUTIONS

Transport of a Conservative Substance from Pulse and Continuous Sources

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Pulse Input of Mass \dot{M}</th>
<th>Continuous Input of Mass Per Unit Time \dot{M} Starting at Time $t = 0$</th>
<th>Continuous Input of Mass Per Unit Time \dot{M} in Steady State</th>
</tr>
</thead>
<tbody>
<tr>
<td>\dot{M} \dot{M} are instantaneous or continuous line sources $\dot{M} \left[\frac{M}{L} \right]$</td>
<td>$C = \frac{M}{4n\pi t \sqrt{D_x D_y}} \exp \left[\frac{(x-vt)^2}{4D_x t} + \frac{y^2}{4D_y t} \right]$</td>
<td>$C = \frac{\dot{M}}{4n\pi^{1/2} (vt)^{1/2} \sqrt{D_y}} \exp \left[\frac{(x-vt)^2}{2D_x} \right] \operatorname{erfc} \left(\frac{r-vt}{2\sqrt{D_x t}} \right)$</td>
<td>$C = \frac{\dot{M}}{2n\pi^{1/2} (vt)^{1/2} \sqrt{D_y}} \exp \left[\frac{(x-vt)^2}{2D_x} \right]$</td>
</tr>
<tr>
<td>\dot{M}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3-D SOLUTIONS

Transport of a Conservative Substance from Pulse and Continuous Sources

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Pulse Input of Mass M</th>
<th>Continuous Input of Mass Per Unit Time \dot{M} Starting at Time $t = 0$</th>
<th>Continuous Input of Mass Per Unit Time \dot{M} in Steady State</th>
</tr>
</thead>
<tbody>
<tr>
<td>M, \dot{M} are instantaneous or continuous point sources</td>
<td>$C = \frac{M}{8n\pi^{3/2}t^{3/2} \sqrt{D_x D_y D_z}} \exp \left[\frac{(x-vt)^2}{4D_x t} + \frac{y^2}{4D_y t} + \frac{z^2}{4D_z t} \right]$</td>
<td>$C = \frac{\dot{M}}{8n\pi r \sqrt{D_y D_z}} \exp \left[\frac{(x-r)v}{2D_x} \right] \text{erfc} \left(\frac{r-vt}{2\sqrt{D_x t}} \right)$</td>
<td>$C = \frac{\dot{M}}{4n\pi r \sqrt{D_y D_z}} \exp \left[\frac{(x-r)v}{2D_x} \right]$</td>
</tr>
</tbody>
</table>