Spreading of lava on a horizontal plane. Huppert, (1986).

Let a finite mass of lava is initially released on a horizontal plane and spread slowly in all radial directions. Invoke the lubrication approximation and assume the local radial velocity to be

\[u(r, z, t) = -\frac{g}{2\nu} \frac{\partial h}{\partial r} z(2h - z) \]

Then use the law of mass conservation

\[\frac{\partial h}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} \left(r \int_{0}^{h} u \, dz \right) = 0 \]

(2)

to show that

\[\frac{\partial h}{\partial t} = \frac{g}{3\nu} \frac{1}{r} \left(r \frac{\partial h}{\partial r} \right) \]

(3)

Show also that

\[2\pi \int_{0}^{R(t)} rh(r, t) \, dr = \text{constant} = V \]

(4)

where \(R(t) \) is the front of the spreading lava. The boundary conditions are

\[h(R(t), t) = 0, \quad \text{and} \quad \frac{\partial h(0, t)}{\partial r} = 0 \]

(5)

Show that the similarity solution exists and is of the form

\[h(r, t) = A \frac{t^{1/4}}{r^{1/8}} f(\eta), \quad \text{with} \quad \eta = \frac{Cr}{t^{1/8}} \]

(6)

subject to the integral constraint (4).

Derive the governing equation and boundary conditions for \(f(\eta) \) and adjust the constants \(A \) and \(C \) so that the governing equations look the simplest. What condition determines \(\eta_R \)?

Try to solve the problem analytically.