1.72, Groundwater Hydrology
Prof. Charles Harvey

Lecture Packet #12: Soil Moisture

Terms and Interpretations

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_{pwp}</td>
<td>Permanent wilting point water content</td>
</tr>
<tr>
<td>θ_{fc}</td>
<td>Field capacity water content</td>
</tr>
<tr>
<td>ϕ</td>
<td>Porosity</td>
</tr>
<tr>
<td>ψ_{ae}</td>
<td>Pressure at which air enters the system (top of the capillary fringe)</td>
</tr>
<tr>
<td>p_0</td>
<td>Atmospheric pressure; underground, the definition of water table</td>
</tr>
<tr>
<td>$\theta = \phi$</td>
<td>Saturation point</td>
</tr>
</tbody>
</table>
Unsaturated Flow: Movement of Soil Moisture

Water molecules attract each other so that at the surface there is a net downward pull on the molecule. The net effect is **surface tension**.

\[\gamma = 72.7 \text{ dyn/cm for water and air [F/L]} \]
\[\gamma = 29 \text{ dyn/cm for benzene} \]
\[\gamma = 430 \text{ dyn/cm for mercury} \]

Energy/L² – the energy required to increase the area. Unlike a membrane, the surface tension doesn’t change with expansion.

Surface tension depends on:

- The substances
- Any solutes
- Temperature
- Gas Pressure
Consider a bubble of air in water:

$$\Delta P = \frac{2\gamma}{R}$$

Blowing air into the bubble decreases the pressure.

$$\gamma_{SL} = \gamma_{GS} + \gamma_{LS} \cos(\alpha)$$

$$\cos(\alpha) = \frac{\gamma_{SL} - \gamma_{GS}}{\gamma_{LG}}$$

GS = gas-solid
SL = solid-liquid
LG = liquid-gas
Capillary Rise

\[\Delta P = \frac{2\gamma \cos(\alpha)}{r} \]

When the height of the meniscus is at steady-state, then the hydrostatic tension must balance the effect of surface tension.

\[hg\rho = \frac{2\gamma \cos(\alpha)}{r} \]

Retention Curves or Soil Moisture Characteristic Curves

A bundle of capillaries (hydrophyllic) all of the same length with pressure adjusted at the bottom. The bundle contains a range of radii. Measure average water content as the suction is gradually increased at the bottom. Plot suction versus water content.

\[\psi = \text{suction} \]
\[\theta_\omega = \text{water content} \]
Pore space in rocks and soil is much more complex geometrically but analogous phenomena give rise to characteristic retention curves for a given sample material.

The shape of the retention curve for a given porous material is influenced by:

1. Texture and Structure
 a. Particle-size distribution
 b. Pore-size distribution
 c. Particle shape
 d. Specific surface

2. History of wetting and drying – Hysteresis
 a. Non-wetting phase entrapment
 b. Swelling and shrinking
 c. Ink-bottle effect – Haines Jump