
Wubify.me

Yanni Coroneos

Massachusetts Institute of Technology, Electrical Engineering and Computer Science

Programmer

Corey Walsh

Massachusetts Institute of Technology, Electrical Engineering and Computer Science

Programmer

Abstract

In this paper, we describe a continuation in the modern trend of audio synthesis based on the
concept of generators, filters, and amplifiers. By combining the achievements of previous products and
taking into account the needs of the user, we propose wubify.me. We assert that users at every level of
expertise can meaningfully benefit from the extended feature set, and we especially believe that our
shareable user-contributed block library can elevate the experience of audio synthesis to a social activity.

May 13, 2015 Page 1

http://wubify.me/

Introduction
Music today is often made with synthesizers - either physical devices that string synths together via

audio cables, or computer programs that do so with bits and bytes. In either case, there is a large learning
curve, and the software or hardware can be inhibitively expensive. Wubify.me attempts to mitigate both of
these obstacles - increasing accessibility of such tools to the general public.

 Left: Example physical controller [3]. Right: Daft Punk’s Pyramid [5]

 Background
The need for wubify.me was realized when a hobbyist electronic music composer expressed

interest in a visual composition system. We decided to investigate the topic further.

Mixers and Synths

The first step was to look at the physical tools that countless real musicians use every day: mixers,
synths, and other related equipment. We noticed a general trend: in the abstract sense, each connected
component could be described as a filter, a generator , or an amplifier . Audio cables act as highways,
linking together a large and flexible audio generation pipeline.

SuperCollider

SuperCollider is the current leader in the field of algorithmic music generation software. According
to their website[4], Supercollider is “a programming language for real time audio synthesis and algorithmic
composition.” What this approximately means, is that it provides low level access to the same set of
concepts that we encountered with physical mixers and synthesizers, in a digital environment. With these
tools, artists can interact with the basic concepts of filters, generators, and amplifiers, through a computer
command line interface rather than the physical counterparts.

Not only does SuperCollider expose the functionality found in real hardware for free, it also does it
in a way that provides a high level of mathematical rigor. Physical devices are unable to afford the same
correctness guarantees, as they are exposed to the imperfections of real-world interactions such as signal

May 13, 2015 Page 2

Csiegel
Typewritten Text

Csiegel
Typewritten Text

Csiegel
Typewritten Text

Csiegel
Typewritten Text

Csiegel
Typewritten Text

Csiegel
Typewritten Text
Images removed due to copyright restrictions. Please see Works Cited on the last page to view images.

Csiegel
Typewritten Text

degradation. This mathematical backing, and the dynamic nature of software, allows SuperCollider models
to be easily and quickly abstracted from basic building blocks (such as sine wave oscillators) to complex
generators or filters composed of many such building blocks.

While SuperCollider provides a great platform for algorithmic music generation, it’s Achilles’ heel
lies in the fact that it is challenging to use. It’s primary interface is through textual computer code - a great
format for conveyance of intention, but not as great for human users.

Concept
We set ourselves on a solution that keeps the flexibility and power of SuperCollider along with the

ease of knobs and buttons. This visual system exposes all of the basic building blocks of synthesized
music to the user. Unlike the old solutions, though, it will be easy to use, require little background
knowledge, and run completely on the web.

Every operation can be done with visual blocks and the connections between them. In a workflow
reminiscent of SuperCollider, the user can arrange generators and filters in order to transform an input
sound. Wires between the blocks will carry the same signals as wires between analog mixers. By
leveraging powerful technology, we can move all aspects of electronic synthesis to the digital world and
simplify it at the same time.

The digital domain also opens doors to new possibilities that aren’t possible with the spatial
limitations of physical devices. Wubify.me aims to combine of the best aspects of SuperCollider and
professional mixers. Its level of abstraction allows the user to visually manipulate the signal chain like a
mixer, but it also allows for the creation of original content.

Since our application runs entirely on the web, we can also allow users to work collaboratively when
creating sounds. This feature can play nicely with another one that allows users to submit their finished
synths to a user block library that everyone can access and contribute to. Of course, each user can also
have his own private block library so that others can’t change their blocks. This kind of functionality is not
possible with a single physical interface. The proposed concept opens the doors to easy abstraction from
low level generators, filters, and amplifiers to higher level objects, similar to physical mixers in presentation
and function.

When considered together, these features allow for augmenting the topology of a digital mixer - or
similar algorithmic devices - by giving it a narrative and history.

Discussion
Sonic Functions as Objects

Our representation of sound as discrete blocks is a continuation of recent changes to the overall
paradigm of composition. Instead of notes, the basic units become generators, filters, and amplifiers.
Generators produce basic sounds which run through filters and the output of those gets run through an
amplifier. Because of this, the topology of these objects suddenly becomes the metric of quality, and not
so much the actual individual sounds themselves. Interest has been shifted to the chain of signal
operations and not the signal itself because the input signal can change but the function performed on it
will remain the same.

May 13, 2015 Page 3

A Narrative With History

The user block library simultaneously serves as a database (in all senses of the word) and as a
medium of communication. Much like how street art is often added to, users can augment already existing
blocks and, in this way, leave their own mark on the narrative. Once submitted, synth blocks could be
reused as if they were a single block. If work is unsaved and public, there is a chance that others may find
it and modify it fit their needs or style. This allows the library of publically available synth blocks to adapt to
the temporal needs of the users. By making synthesis more accessible, a wider range of people can
contribute to the narrative. There is also power in numbers. Increasing users crowdsources the problem of
designing interesting synths and we hope this can result in novel sounds.

Real-Time Collaboration

With the introduction of real-time collaboration on public synth blocks, there is a level of fluidity that
is introduced. Suddenly, many users can simultaneously work on a single synth block at the same time.
There is no single author. This leads to a workflow similar to that of a Google Doc with multiple
collaborators or even a Wikipedia page. Feedback is instant and creativity abounds.

Implementation
As a proof of concept, we have begun an implementation of the above described system, which we

will discuss throughout this section.

Enabling Technologies

Our proof-of-concept application would not be possible without the help of a long list of enabling
technologies. Most notably:

Flocking.js[2] - Flocking is a SuperCollider inspired JavaScript library that provides a similar
interface and operation. It has the benefit of being executable in the browser - greatly simplifying the
process of delivering audio output to our users

JointJS/Rappid[1] - “A complete diagramming toolkit.” [1] JointJS is a JavaScript library that
provides support for visualization and interaction with graphs. Rappid provides a set of higher level features
that greatly sped up the development process of our proof-of-concept. While JointJS has a free and open
source MPL 2.0 license, Rappid is a commercial product that was provided free of charge for our academic
use.

Node.js - A leading, open source web-server platform written on top of Chrome’s high performance
V8 JavaScript runtime. Node provides a platform for both our file serving needs and our application’s
runtime requirements.

Development

The implementation of this project decomposes into a few parts:

1. Flocking.js Representation
2. Graph Representation
3. User Interface - Shared block library, real time collaboration
4. Web Serving
5. Persistence

May 13, 2015 Page 4

The primary ‘brains’ of the technology is the algorithm that converts the graph representation into
the valid JSON object that Flocking.js requires. This algorithm traverses the graph, at each node it
generates a corresponding Ugen descriptor, populated with default values and user specified options.
Finally, it sews the fragments into a cloth that represents the network of data commutations.

Fig 1. Graph representation of the signal chain

Rappid.js and Joint.js provide the basis for our demo user interface. Most other levels in of
implementation - such as web serving and persistence - rely on fairly standard and freely available tools,
discussed further in the Enabling Technologies section.

Journey Map

Wubify.me has a straightforward UI. When a user logs in, they are presented with a new synth block
creation interface. The sidebar provides a set of base level unit generators (ugens) which form the basis in
terms of filters, a generators, and amplifiers. Users can build their own synth blocks from these ugens, as
well from the other contributed user ugens that appear on the sidebar.

The user drags a few ugen blocks into the empty space and notices that they have input and output
ports. By dragging arrows from outputs to inputs, the user can cascade the ugens. Mathematically, this is
equivalent to cascading transfer functions - each function commutating the input data in some well defined
manner.

Each ugen may vary but common inputs are “add,” “mul,” “freq,” and “phase.” Connecting an
output to each of these ports either adds or multiplies the converging signals, or modifies the base
frequency or phase angle of the target ugen block, respectively. From there the user composes ugens and
then hears the result by clicking the play button.

May 13, 2015 Page 5

Fig 2. A chain of ugens that results in a beat frequency

If desired, the current block state can be saved into a new synth block in the user block library by
clicking the save button.

Future Directions

Our proof of concept application provides the basics, but we believe that this project could be taken
further.

A built in sequencer would allow for more natural coordination of multiple generators. This would
give the user a similar manner of control to programs such as Garageband or Audacity. The ability to string
synth blocks together in time is certainly a powerful one and it definitely needs to happen. Currently, a
similar effect can be painfully achieved with multiple delay blocks and triggers, but this only highlights the
need for a sequencer.

While our implementation is built on Flocking.js, only relatively minor changes would be required to
make it work with SuperCollider. Aside from the availability of basic a few basic synth blocks, the UI would
be virtually unchanged; only a new graph parser would be required to generate valid SuperCollider code.

Since SuperCollider cannot run directly in the web browser, the downside of this method is that
users would have to accept networking lag due to the time required to communicate with SuperCollider
servers, or run their own local server to avoid the network. The former is easier from the user’s point of
view, but may not be responsive enough for professionals, conversely the latter requires more configuration
and know-how, but provides faster response times for real-time music creation. One benefit of this
approach is that users could choose options depending on their experience level or requirements.

Our abstractions of signal transformations into blocks can be applied to other fields. For example, a
lot of video processing also relies on a signal chain of filters and amplifiers so perhaps we could tailor our
existing implementation for that type of use. Ugens would emit a video and the filters would be

May 13, 2015 Page 6

two-dimensional instead of one-dimensional. The prospect of having real-time collaboration on a video
project seems great.

Conclusion
Wubify.me aims to bring synthesizers and mixers into the 21st century. By combining powerful

technology with innovative social additions, we hope that electronic music synthesis can become more fun
and accessible to everyone. SuperCollider gives us a base to build from and Rappid.js gives us the means
to visually represent sound. A working implementation is really just the beginning; the rest comes from you.

Works Cited
[1] http://jointjs.com/about-rappid

[2] http://flockingjs.org/

[3] http://ecx.images-amazon.com/images/I/71pG5fR-4wL._SL1461_.jpg

[4] http://supercollider.github.io/

[5] https://digitaldj.files.wordpress.com/2008/07/daft_pyramid.jpg

May 13, 2015 Page 7

http://jointjs.com/about-rappid
http://flockingjs.org/
http://ecx.images-amazon.com/images/I/71pG5fR-4wL._SL1461_.jpg
http://supercollider.github.io/
https://digitaldj.files.wordpress.com/2008/07/daft_pyramid.jpg

MIT OpenCourseWare
http://ocw.mit.edu

CMS.633 / CMS.833 Digital Humanities
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

