The Error Function

We will use the conduction equation in a few more classes to relate lithospheric thickness to time and temperature so we might as well right down one very useful time-dependent solution, called the error function and written erf(y).

\[erf(y) = \frac{2}{\sqrt{\pi}} \int_{0}^{y} e^{-\gamma'^2} d\gamma' \]

This function has the property that erf(0)=0, erf(+infinity)=1.

Consider now the function:

\[T(z,t) = T_s + (T_{in} - T_s) \text{erf}\left(\frac{z}{2\sqrt{kt}}\right) = T_s + \frac{2(T_{in} - T_s)}{\sqrt{\pi}} \int_{0}^{\frac{z}{2\sqrt{kt}}} e^{-\gamma'^2} d\gamma' \]

This function has the property that its value at z=0 is T_s at all times, its value at t=0 is T_{in} for all values of z>0, and it is a solution to the heat conduction equation. (We will leave it to the homework to show that it is a solution and to calculate the rate of conductive cooling of a planetary surface.) Later on we will use this expression to calculate the thermal behavior of the oceanic lithosphere on earth.