Seismic waves
Seismic wave equation

\[
\text{mass } \times \text{acceleration} = \sum \text{forces}
\]

\[
\rho \frac{\partial^2 u_i}{\partial t^2} = \sigma_{ij,j} + f_i
\]

This image has been removed due to copyright restrictions.

Please see:
http://epscx.wustl.edu/seismology/book/chapter2/chap2_sr/2_3_05_s.JPG

Stein and Wysession, 2003
Seismic wave equation

This image has been removed due to copyright restrictions.

Please see:
http://epscx.wustl.edu/seismology/book/chapter2/chap2_sr/2_3_11_s.JPG

Stein and Wyssession, 2003

strain tensor

\[e_{ij} = \frac{1}{2} \left(\partial_i u_j + \partial_j u_i \right) = \begin{pmatrix} \frac{\partial u_1}{\partial x_1} & \frac{1}{2} \left(\frac{\partial u_1}{\partial x_2} + \frac{\partial u_2}{\partial x_1} \right) & \frac{1}{2} \left(\frac{\partial u_1}{\partial x_3} + \frac{\partial u_3}{\partial x_1} \right) \\ \frac{1}{2} \left(\frac{\partial u_2}{\partial x_1} + \frac{\partial u_1}{\partial x_2} \right) & \frac{\partial u_2}{\partial x_2} & \frac{1}{2} \left(\frac{\partial u_2}{\partial x_3} + \frac{\partial u_3}{\partial x_2} \right) \\ \frac{1}{2} \left(\frac{\partial u_3}{\partial x_1} + \frac{\partial u_1}{\partial x_3} \right) & \frac{1}{2} \left(\frac{\partial u_3}{\partial x_2} + \frac{\partial u_2}{\partial x_3} \right) & \frac{\partial u_3}{\partial x_3} \end{pmatrix} \]
Seismic wave equation

This image has been removed due to copyright restrictions.

Please see:
http://epscx.wustl.edu/seismology/book/chapter2/chap2_sr/2_3_12_s.JPG

Stein and Wysession, 2003

strain tensor

\[e_{ij} = \frac{1}{2} (\partial_i u_j + \partial_j u_i) = \begin{pmatrix}
\frac{\partial u_1}{\partial x_1} & \frac{1}{2} \left(\frac{\partial u_1}{\partial x_2} + \frac{\partial u_2}{\partial x_1} \right) & \frac{1}{2} \left(\frac{\partial u_1}{\partial x_3} + \frac{\partial u_3}{\partial x_1} \right) \\
\frac{1}{2} \left(\frac{\partial u_2}{\partial x_1} + \frac{\partial u_1}{\partial x_2} \right) & \frac{\partial u_2}{\partial x_2} & \frac{1}{2} \left(\frac{\partial u_2}{\partial x_3} + \frac{\partial u_3}{\partial x_2} \right) \\
\frac{1}{2} \left(\frac{\partial u_3}{\partial x_1} + \frac{\partial u_1}{\partial x_3} \right) & \frac{1}{2} \left(\frac{\partial u_3}{\partial x_2} + \frac{\partial u_2}{\partial x_3} \right) & \frac{\partial u_3}{\partial x_3}
\end{pmatrix} \]
Seismic wave equation

Constitutive equation (Hooke’s Law)

\[
\sigma_{ij} = c_{ijkl} e_{kl} = \sum_{k=1,3} \sum_{l=1,3} c_{ijkl} e_{kl}
\]

\[
\sigma_{ij} = c_{ijkl} \sum_{k=1,3} \sum_{l=1,3} \left[\frac{1}{2} \left(\partial_k u_l + \partial_l u_k \right) \right]
\]

\[
= c_{ijkl} \sum_{k=1,3} \sum_{l=1,3} [\partial_l u_k]
\]

\[
= c_{ijkl} u_{k,l}
\]

Back to the equation of motion:

\[
\text{mass} \times \text{acceleration} = \sum \text{forces}
\]

\[
\rho \frac{\partial^2 u_i}{\partial t^2} = \sigma_{ij,j} + f_i
\]

\[
\rho \frac{\partial^2 u_i}{\partial t^2} = \left[c_{ijkl} u_{(k,l)} \right]_j + f_i
\]

\[
\rho \frac{\partial^2 u_i}{\partial t^2} \approx c_{ijkl} u_{(k,l),j} + f_i
\]
Seismic wave equation

\[\rho \frac{\partial^2 u_i}{\partial t^2} = c_{ijkl} u_{(k,l),j} + f_i \]

isotropic medium:

\[c_{ijkl} = \lambda \delta_{ij} \delta_{kl} + \mu (\delta_{ij} \delta_{jk} + \delta_{ik} \delta_{jl}) \]

Helmholtz decomposition:

\[u = \nabla \phi + \nabla \times \psi \]

\[\nabla \times \nabla \phi = 0 \]

\[\nabla \cdot \nabla \times \psi = 0 \]
Seismic wave equation

P-wave

wave eq: \[\alpha^2 \nabla^2 \phi - \frac{\partial^2 \phi}{\partial t^2} = -\frac{1}{\rho} F_P \]

velocity: \[\alpha = \sqrt{\frac{\lambda + 2\mu}{\rho}} \]

S-wave

\[\beta^2 \nabla^2 \psi - \frac{\partial^2 \psi}{\partial t^2} = -\frac{1}{\rho} F_S \]

\[\beta = \sqrt{\frac{\mu}{\rho}} \]

This image has been removed due to copyright restrictions.

Please see:
http://epscx.wustl.edu/seismology/book/chapter2/chap2_sr/2_4_03_s.jpg

Stein and Wysession, 2003
Seismic velocities in the Earth

This image has been removed due to copyright restrictions.

Please see:
http://epscx.wustl.edu/seismology/book/chapter3/chap3_sr/3_8_04_s.jpg
Seismic velocities in the Earth

<table>
<thead>
<tr>
<th>Depth (km)</th>
<th>Radius (km)</th>
<th>Density (g/cc)</th>
<th>P (kbar)</th>
<th>Vp (km/s)</th>
<th>Vs (km/s)</th>
<th>Φ (km²/s²)</th>
<th>K (kbar)</th>
<th>μ (kbar)</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6371</td>
<td>1.02</td>
<td>0</td>
<td>1.45</td>
<td>0</td>
<td>2.10</td>
<td>21</td>
<td>0</td>
<td>0.500</td>
</tr>
<tr>
<td>3.0</td>
<td>6368</td>
<td>1.02</td>
<td>0.2</td>
<td>1.45</td>
<td>0</td>
<td>2.10</td>
<td>21</td>
<td>0</td>
<td>0.500</td>
</tr>
<tr>
<td>3.0</td>
<td>6368</td>
<td>2.60</td>
<td>0.3</td>
<td>5.80</td>
<td>3.20</td>
<td>19.99</td>
<td>520</td>
<td>266</td>
<td>0.281</td>
</tr>
<tr>
<td>15.0</td>
<td>6356</td>
<td>2.60</td>
<td>3.3</td>
<td>5.80</td>
<td>3.20</td>
<td>19.99</td>
<td>520</td>
<td>266</td>
<td>0.281</td>
</tr>
<tr>
<td>15.0</td>
<td>6356</td>
<td>2.90</td>
<td>3.3</td>
<td>6.80</td>
<td>3.90</td>
<td>25.96</td>
<td>753</td>
<td>441</td>
<td>0.254</td>
</tr>
<tr>
<td>24.4</td>
<td>6346.6</td>
<td>2.90</td>
<td>6.0</td>
<td>6.80</td>
<td>3.90</td>
<td>25.96</td>
<td>753</td>
<td>441</td>
<td>0.254</td>
</tr>
<tr>
<td>24.4</td>
<td>6346.6</td>
<td>3.38</td>
<td>6.0</td>
<td>8.11</td>
<td>4.49</td>
<td>38.89</td>
<td>1315</td>
<td>682</td>
<td>0.278</td>
</tr>
<tr>
<td>40.0</td>
<td>6331</td>
<td>3.37</td>
<td>11.2</td>
<td>8.10</td>
<td>4.48</td>
<td>38.81</td>
<td>1311</td>
<td>680</td>
<td>0.279</td>
</tr>
<tr>
<td>60.0</td>
<td>6311</td>
<td>3.37</td>
<td>17.8</td>
<td>8.08</td>
<td>4.47</td>
<td>38.71</td>
<td>1307</td>
<td>677</td>
<td>0.279</td>
</tr>
<tr>
<td>80.0</td>
<td>6291</td>
<td>3.37</td>
<td>24.5</td>
<td>8.07</td>
<td>4.46</td>
<td>38.60</td>
<td>1303</td>
<td>674</td>
<td>0.279</td>
</tr>
</tbody>
</table>
Seismic waves

Body Waves: P-waves and S-waves are body waves, as they can travel in all directions through an elastic volume.
Seismic waves

Ray theory: seismic wavefield can be described by discrete, linear ray paths linking sources and receivers (infinite frequency approximation)

This image has been removed due to copyright restrictions.

Please see:
http://epscx.wustl.edu/seismology/book/chapter2/chap2_sr/2_4_04_s.jpg
Surface waves

Surface

$\beta_1 \otimes \text{SH} \beta_2$

Velocity: $c_x < \beta_2$
Surface waves

Velocity: $c_x = 0.92 \beta$
Energy of seismic waves

\[\overline{E} = \frac{1}{2} \rho A^2 \omega^2 \]

Body waves

\[\overline{E}(r) \propto \frac{1}{r^2} \]

Surface waves

\[\overline{E}(r) \propto \frac{1}{r} \]
Kobe earthquake, Jan 17, 1995, M 7.2

Image courtesy of Oklahoma Geological Survey.
Kobe earthquake, Jan 17, 1995, M 7.2

links to video footage of surface waves:

http://www.youtube.com/watch?v=pXATR6vOcfQ

http://www.youtube.com/watch?v=0plbf5w0sbA&NR=1
12.103 Science and Policy of Natural Hazards
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.