1 Review of vector calculus.

The following is a brief refresher of vector calculus to the extent that we'll be using it in class.

Notation:

\[\mathbf{r} = (r_1, r_2, r_3) = (x, y, z) \]
would typically denote a position vector. (You may think of this as a column vector; \(r^T \) would then be a row vector.)

\[\hat{\mathbf{r}} \]
is a unit vector.

\[\mathbf{a} \mathbf{b} = a_i b_j \]
is a vector dyad (notation as in Problem 7). In matrix representation, we would write \(\mathbf{a} \mathbf{b}^T \) showing how it can be obtained as the matrix product of a column and a row vector. It is indeed the tensor (or matrix) with \(a_i b_j \) as the \(i^j \)th element.

Let \(U(x, y, z) \) be a scalar function of position.
Let \(\mathbf{B}(x, y, z) = (B_x(x, y, z), B_y(x, y, z), B_z(x, y, z)) \) be a vector function of position. It defines a vector at every point in space, \(B_x(x, y, z) \hat{x} + B_y(x, y, z) \hat{y} + B_z(x, y, z) \hat{z} \).

The gradient operator \(\nabla \) has components \(\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right) \). It augments the order of a tensor with one: from our scalar function \(U \), it defines the vector field

\[
\nabla U = \begin{pmatrix} \frac{\partial U}{\partial x} & \frac{\partial U}{\partial y} & \frac{\partial U}{\partial z} \end{pmatrix}
\]

It makes a second-order tensor from a vector, and so on.
The **divergence** operator \(\nabla \cdot \) (the **dot product** of the gradient with the argument) reduces the order with one - from our **vector** field, it makes a **scalar** field.

\[
\nabla \cdot \mathbf{B} = \frac{\partial B_x}{\partial x} + \frac{\partial B_y}{\partial y} + \frac{\partial B_z}{\partial z} \tag{2}
\]

The divergence measures **sources** and **sinks** in the material. In continuum mechanics, the best example of what this means is: a material with invariant volume (incompressible) has a velocity field (specifying the velocity of each particle at each point in space) which is said to be **divergence-free**: \(\nabla \cdot \mathbf{u} = 0 \).

The **Laplacian** operator \(\nabla \cdot \nabla \) or \(\nabla^2 \) leaves the order of a tensor intact. For the scalar function \(U \),

\[
\nabla^2 U = \frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} + \frac{\partial^2 U}{\partial z^2} \tag{3}
\]

The **curl** or rotation operator \(\nabla \times \) (the **cross product** of the gradient with the argument) also leaves the order intact - for our vector function \(\mathbf{B} \), the easiest representation is in **determinant** form:

\[
\nabla \times \mathbf{B} = \begin{vmatrix}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\frac{\partial}{\partial z} & \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\
B_x & B_y & B_z
\end{vmatrix} \tag{4}
\]

which is as much as

\[
\left(\frac{\partial B_z}{\partial y} - \frac{\partial B_y}{\partial z} \right) \hat{x} + \left(\frac{\partial B_x}{\partial z} - \frac{\partial B_z}{\partial x} \right) \hat{y} + \left(\frac{\partial B_y}{\partial x} - \frac{\partial B_x}{\partial y} \right) \hat{z} \tag{5}
\]

which defines a vector field normal to \(\mathbf{B} \) and its gradient. It measures the **vorticity** of the \(\mathbf{B} \)-field (see problem 6 for a clarifying example of what this means).

2
2 Problems.

Let \(U = 2 \frac{z}{y} + 2 \frac{xy^3}{x^2} + 3xz^4 \)
Let \(B = \frac{z}{x} \hat{x} + 2y^3z \hat{y} + 2y^2z^3 \hat{z} \)

1. Calculate the gradient of \(U \).
2. Calculate the divergence of \(B \).
3. Calculate the Laplacian of \(U \).
4. Verify that the curl of the gradient of \(U \) is 0.
5. Verify that \(B \cdot (B \times \nabla U) \) is 0.
6. Let \(\mathbf{u}^e = \omega (-y \hat{x} + x \hat{y}) \) describe a velocity field in a material.
 (a) What kind of motion is this material undergoing?
 (b) Make a plot of this vector field.
 (c) Calculate \(\frac{1}{2} \nabla \times \mathbf{u}^e \). Explain what you get.
7. Let \(\mathbf{I} \) be the identity tensor/matrix. What kind of an operator is
 \[
 (\mathbf{I} - 2\hat{z}) \cdot ?
 \]
(6)
8. (a) Calculate the (scalar) moment of inertia (around one axis) of a spherically symmetric body with constant density.
 (b) Now derive an expression for the moment of inertia for spherically symmetric bodies with a two-step variation of density. Apply this to a planet with a uniform-density mantle and a uniform core of half the total radius \(R \), and with a density that is \(f \) times the mantle density. What values of \(f \) would be required to give moments of inertia of \(293/886 \, MR^2 \), \(73/200 \, MR^2 \), and \(391/1000 \, MR^2 \), corresponding to Earth, Mars and Moon, respectively?
 (c) The next step is a continuous, functional variation of density with radius. The following are data on the density variations within the Sun.
\[
\begin{array}{|c|c|}
\hline
\frac{r}{r_s} & \rho \text{ (kgm}^{-3}\text{)} \\
\hline
0 & 160,000 \\
0.04 & 141,000 \\
0.1 & 89,000 \\
0.2 & 41,000 \\
0.3 & 13,300 \\
0.4 & 3,600 \\
0.5 & 1,000 \\
0.6 & 350 \\
0.7 & 80 \\
0.8 & 18 \\
0.9 & 2 \\
0.95 & 0.4 \\
1.0 & 0 \\
\hline
\end{array}
\]

Assume a monotonous decrease of density with distance from the center. Describe \(\rho(r) \) functionally by fitting a low-order polynomial through the data. (Note: MATLAB’s function polyfit might come in handy here. Use these expressions to obtain an estimate of the moment of inertia of the Sun. A detailed estimate yields 5.7 \times 10^{46} \text{ kgm}^2.) What fraction is this value of the moment of inertia of a uniform sphere of the same mass and radius?

The outer radius is \(r_s = 6.96 \times 10^8 \text{ m} \) and the total mass is \(M_s = 1.989 \times 10^{30} \text{ kg} \).
3 Matlab

We don’t want to require you to use MATLAB™ but in fact, for many problems, there will be a part where you can find out how fun MATLAB™ really can be. For your convenience & entertainment, see what happens if you run the following programs...

```
% Program jello.m

clear all
x1=2:2:10;
x2=2*ones(size(x1));
X=[x1; x2];
t=0:0.05:1;
om=2*pi;

for ind=1:length(X),
    r1=X(1,ind)*cos(om*t)+X(2,ind)*sin(om*t);
    r2=-om*X(1,ind)*sin(om*t)+om*X(2,ind)*cos(om*t);
    v1=-om*X(1,ind)*cos(om*t)-om*X(2,ind)*sin(om*t);
    v2=om*X(1,ind)*cos(om*t)+om*X(2,ind)*sin(om*t);
    R1(:,ind)=r1';
    R2(:,ind)=r2';
    V1(:,ind)=v1';
    V2(:,ind)=v2';
end

quiver(R1,R2,V1,V2,0.75)
axis([-10 10 -10 10])
axis('square')
grid

% Program flow.m

clear all
r1=-5:1:5;
r2=-5:1:5;
[R1,R2]=meshgrid(r1,r2);
v1=r1;
v2=-r2;
[V1,V2]=meshgrid(v1,v2);
quiver(R1,R2,V1,V2,2)
axis([-6 6 -5 5])
axis('square')
grid
```