Rayleigh - Taylor Instability
Growth of Boundary Undulations

- salt domes
- diapirs
- continental delamination

\[\lambda = \lambda_0 \]

\[\eta_u, \eta_l \]

\[\xi = \xi_0 \cos \frac{2\pi x_1}{\lambda} = \xi_0 \cos kx \]

Figure 24.18
Figure by MIT OCW.

General problem: topography on an interface

\[\xi = \xi_0 \cos kx_1 \quad k = \frac{2\pi}{\lambda} \]

1. If \(\rho_u < \rho_l \) topography decays as \(\xi_0 e^{-t/\tau} \).
2. If \(\rho_u > \rho_l \) topography grows.

Initially \(\xi = \xi_0 e^{t/\tau} \).

Eventually many wavelengths interact, problem is no longer simple.

Characteristic time \(\tau \) depends on \(\Delta \rho, \eta_u, \eta_l \), thickness of layers, …
Weight of ice causes viscous flow in the mantle.

After melting of ice, the surface rebounds – “postglacial rebound”.

Different regions have different behaviors (e.g., Boston is now sinking).
Figure 24.20
Figure by MIT OCW.

Problem: how to reconcile physical boundary conditions with mathematical description?