Where, Oh, Where has all the Carbon Gone?

Anonymous Student
3/9/06
The Papers

Radiocarbon: a Quick Review

• ^{14}C is a radioactive isotope of carbon
• $t_{1/2}=5730$ years
• Produced in the upper atmosphere from nitrogen by cosmic ray produced neutrons:
 $$^{14}\text{N} + \text{n} \Rightarrow ^{14}\text{C} + \text{p}$$
• Production therefore independent of atmospheric pCO_2
• Decays back to nitrogen by beta decay:
 $$^{14}\text{C} \Rightarrow ^{14}\text{N} + \beta$$
Suess Effect, 1953

\[\Delta^{14}C_{atm} \Rightarrow \frac{^{14}C_{atm}}{^{12}C_{natural} + ^{12}C_{anthro}} \]

Graphs depicting $\Delta^{14}C$ % vs. years removed due to copyright restrictions.
On the Shoulders of Giants

Arrhenius, S., "On the Influence of Carbonic Acid in the Air upon the Temperature of the Ground"
Philosophical Magazine 41, 237-276 (1896)

“some of the atmospheric gases absorb considerable quantities of heat”

“The selective absorption of the atmosphere…is not exerted by the chief mass of the air, but in a high degree by aqueous vapour and carbonic acid, which are present in the air in small quantities”

Arrhenius calculated in this paper that a doubling of CO\textsubscript{2} would cause a temperature rise of 5 °C. Current IPCC estimates have it between 1.5 and 4.5 °C.
Summary Revelle & Suess, 1957

- Pre-Keeling Curve of atmospheric CO$_2$
- Assumed Ocean-Atmosphere CO$_2$ reservoirs as a closed system (no land sink)
- Determined a τ_{atm} for CO$_2$ of \sim10 years based on 14C age of marine materials and the effects of anthropogenic CO$_2$ on atmospheric 14C
- The “Revelle Factor”
 \[\gamma = \frac{r}{s} \frac{S_0}{A_0} \]
 \[R = \frac{\partial p_{CO_2}}{p_{CO_2}} \cdot \frac{DIC}{\partial DIC} \]
Effect of γ (Revelle Factor) on Atmospheric CO_2

Revelle & Suess, 1957

Figure depicting expected secular increase in the CO_2 concentration of air removed due to copyright restrictions.
Paraphrase: Using radiocarbon measurements to calculate diffusive and advective fluxes. These fluxes can be used to put real-time into dynamic circulation models of the ocean.

The Toolbox: Solving the general equation for radioactive nonconservative tracers in the 1-D diffusion-advection model:

Formula removed due to copyright restrictions.

by successively fitting concentration profiles with related tracer classes.
Stable Conservative (SC) Tracers Craig, 1969

• Salinity and Temperature
• Have the most simplistic dynamics, $J = \lambda = 0$
• Can be used to compute $z^* = K/\omega \approx 1\text{km}$, the 1-D mixing parameter
• Constraints on K give $0.3 < \omega < 30 \text{ m/yr}$

Formula removed due to copyright restrictions.

A BIG MESS EASY!

Formula removed due to copyright restrictions.
Stable Nonconservative Tracers
Craig, 1969

- Total CO$_2$ and dissolved O$_2$
- $\lambda = 0$, $J \neq 0$
- Now we can calculate $J/\omega = 0.8$ from stable carbon profiles
- Remineralization constraints lead to a rough estimate of $\omega = 6 \pm 3$ m/yr
- $\tau^{\text{DIC}}_{\text{part.flux}} = 10 \times \tau^{\text{DIC}}_{\text{mix}}$

Graph depicting ΣCO$_2$ profiles in the Pacific at 31°S [Weiss and Craig, 1968] and 0°-30N [Li et al., 1969] removed due to copyright restrictions.
• $\lambda \neq 0, J \neq 0$: Use the full diffusion-advection model with previously fixed parameters from the stable tracers

• In the abyss, ^{14}C decay rate balanced by particle input: $J^* \approx \lambda C^*$

• RNC profiles are fit with a value of λ/ω and from this, Craig infers $\omega = 6.8$ m/yr
Conclusions

• Diffusion-advection calculations from \sumCO$_2$, dissolved O$_2$, and 14C give estimates of
 – $\omega = 7$ m/yr
 – $K = 2$ cm2/sec

• Horizontal flow velocities could not be calculated because $J^* \approx \lambda C^*$, thus it cannot be considered a “closed system” to compute a record of elapsed time

• Analytical precision of 14C needs improvement or 14C half life is slightly too long for better resolution of ω

• He4 & He3???
Methods Stuiver, Quay, & Ostlund, 1983

- 2200 14C samples taken from Atlantic, Pacific and Indian Oceans
- 14C mass balances done on basin-wide box models, allowing for heterogeneity in 14C
- 14C nearly constant in Antarctic circumpolar waters, providing a great boundary condition
- Transport rates determined based on mass and 14C balances for Indian and Pacific
- NADW mass transport set at 14 Sv from tracer and geostrophic calculations

Box model of the deep ocean removed due to copyright restrictions.
Findings Stuiver, Quay, & Ostlund, 1983

• General decrease in $\Delta^{14}C$ from Atlantic to Antarctic and from Antarctic to Indian and Pacific

Graphs depicting average $\Delta^{14}C$ values of waters below a depth of 1500m for Atlantic, Pacific, and Indian ocean GEOSECS stations removed due to copyright restrictions.
Conclusions

• Water replacement times:
 – Atlantic: 275 years
 – Indian: 250 years
 – Pacific: 510 years
 – Deep Circumpolar Water: 85 years
 – Mean World Oceans: 500 years

• Pacific mean upwelling rate of 5 m/yr (consistent with Craig, 1969)
Partitioning Carbon Fluxes and Reservoirs

Siegenthaler & Sarmiento, 1993

Figures of Pre-industrial carbon cycle and carbon cycle (1980-89) removed due to copyright restrictions.

Table of budget of annual anthropogenic CO$_2$ perturbations removed due to copyright restrictions.
Interhemispheric Concentration Difference and CO$_2$ sinks

Siegenthaler & Sarmiento, 1993

- 95% of fossil fuel emissions occur in NH
- SH atm. CO$_2$ increase lags behind NH
- NH sinks exceed those in the SH

Siegenthaler & Sarmiento, 1993

- Graph of CO$_2$ concentration vs. year (1955-95) removed due to copyright restrictions.
- Graph of CO$_2$ difference NH-SH vs. fossil-fuel emission removed due to copyright restrictions.
- Figure of column inventory of anthropogenic CO$_2$ in the ocean removed due to copyright restrictions.

Sabine, et al, 2004
Conclusions

Siegenthaler & Sarmiento, 1993

• Ocean has taken up about 1/3 of anthropogenic CO₂
• Direct Air-Sea flux measurements of CO₂ provide only limited information on oceanic uptake of anthropogenic CO₂
• Rate limiting step for oceanic CO₂ uptake is the vertical water transport
• Missing sink/imbalance likely due to soils and vegetations have accumulated carbon due to anthropogenic CO₂ or nitrogen fertilization