1. Consider the following linearized equations in 1 and 3 dimensions and impose a wave solution as shown:

<table>
<thead>
<tr>
<th>Linearized Equation</th>
<th>Plane wave</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi_t + c \phi_x = 0)</td>
<td>(e^{i k x - i \omega t})</td>
</tr>
<tr>
<td>(\phi_{tt} - c^2 \phi_{xx} = 0)</td>
<td>(e^{i k x - i \omega t})</td>
</tr>
<tr>
<td>(\phi_t + \bar{c} \nabla \phi = 0)</td>
<td>(e^{i k \cdot \bar{x} - i \omega t})</td>
</tr>
<tr>
<td>(\phi_{tt} - c^2 \nabla^2 \phi = 0)</td>
<td>(e^{i k \cdot \bar{x} - i \omega t})</td>
</tr>
<tr>
<td>(\nabla^2 \phi_t + \beta \phi_x = 0)</td>
<td>(e^{i k \cdot \bar{x} - i \omega t})</td>
</tr>
</tbody>
</table>

Find the dispersion relation for each of them and the phase speed (or three phase speed in 3 dimensions)

2. Suppose a wave is found that has the form

\[\phi = A e^{i \theta} \]

where

\[\theta = -\alpha t^2 / x \]

a) If the wave can be thought of as slowly varying, what are its frequency, wavenumber and dispersion relation?

b) Now that you have \(\omega \) and \(k \), when will the slowly varying assumption be valid?

3. Consider the interface between two semi-infinite fluids of different densities:
Imposing wave solutions for \((\phi_1, \phi_2, \eta)\) that obey the deep water equations derive the boundary conditions that must be satisfied at \(z = 0\) and the dispersion relation. What type of wave have you obtained?

4. Consider a deep water wave impinging on a current \(V(x)\) of the following shape:

\[
\begin{align*}
\text{a)} & \quad \text{What is the dispersion relation?} \\
\text{b)} & \quad \text{Derive the ray equations for } (\omega, k, \ell) \text{ and discuss their implications.} \\
\text{c)} & \quad \text{A wave packet starts its motion with initial conditions } (\ell_0, k_0, \omega_0) \text{ where } V(x) \equiv 0 \text{ and impinges on the current. What is } k(x) \text{? Sketch the variation of the wave from } x = 0 \text{ to } x = L. \\
\text{d)} & \quad \text{If the wave ray moves as in the sketch:}
\end{align*}
\]

\[
\begin{align*}
\text{What is } \sin \theta(x) \text{? What is the ratio } \frac{\sin \theta(x)}{\sin \theta_0}?
\end{align*}
\]