When Saturation Occurs…

- Heterogeneous Nucleation
- Supersaturations very small in atmosphere
- Drop size distribution sensitive to size distribution of cloud condensation nuclei
ICE NUCLEATION PROBLEMATIC

Percentage of clouds with ice particle concentrations above detectable level

Cloud top temperature (°C)

Image by MIT OpenCourseWare.
Precipitation Formation:

• Stochastic coalescence (sensitive to drop size distributions)
• Bergeron-Findeisen Process
• Strongly nonlinear function of cloud water concentration
• Time scale of precipitation formation ~10-30 minutes
Stability

No simple criterion based on entropy:

\[s_d = c_p \ln \left(\frac{T}{T_0} \right) - R_d \ln \left(\frac{p}{p_0} \right) \]

\[\alpha = \alpha(s_d, p) \]

\[s = c_p \ln \left(\frac{T}{T_0} \right) - R_d \ln \left(\frac{p}{p_0} \right) + L_v \frac{q}{T} - qR_v \ln(H) \]

\[\alpha = \alpha(s, p, q_t) \]
Virtual Temperature and Density Temperature

Assume all condensed water falls at terminal velocity

\[\alpha = \frac{V_a + V_c}{M_d + M_v + M_c} \]

\[pV = nR \ast T \]

\[V_a = \frac{R \ast T}{p} \left(\frac{M_d}{m_d} + \frac{M_v}{m_v} \right), \]
\[
\overline{m_d} \equiv \frac{1}{M_d} \sum_i \frac{M_i}{m_i}
\]

\[\rightarrow V_a = \frac{R_d T}{p} \left(M_d + \frac{M_v}{\varepsilon} \right),\]

where \[\varepsilon \equiv \frac{m_v}{\overline{m_d}} \approx 0.622\]

\[R_d \equiv \frac{R^*}{\overline{m_d}}\]
\[\alpha = \frac{V_a + V_c}{M_d + M_v + M_c} = \frac{R_d T}{p} \left(1 - q_t + \frac{q}{\varepsilon} \right) \left(1 + \frac{q_c}{1 - q_c} \frac{\rho_a}{\rho_c} \right) \]

\[\approx \frac{R_d T}{p} \left(1 - q_t + \frac{q}{\varepsilon} \right) \]

\[q_t \equiv \frac{M_v + M_c}{M}, \quad q \equiv \frac{M_v}{M} \]

Density temperature:

\[T_\rho \equiv T \left(1 - q_t + \frac{q}{\varepsilon} \right) \]

\[\alpha = \frac{R_d T_\rho}{p} \]
Trick:

Define a saturation entropy, s^*:

$$s^* \equiv s(T, p, q^*)$$

$$\alpha = \alpha(s^*, p, q_t)$$

We can add an arbitrary function of q_t to s^* such that

$$\alpha \cong \alpha(s^*, p)$$
LCL for surface parcel
Stability Assessment using Tephigrams:
Stability Assessment using Tephigrams:

Convective Available Potential Energy (CAPE):

\[CAPE_i = \int_{p_n}^{p_i} (\alpha_p - \alpha_e) dp \]

\[= \int_p^{p_i} R_d \left(T_{\rho_p} - T_{\rho_e} \right) d \ln(p) \]
Other Stability Diagrams:

![Mean Reversible Density Temperature Difference (K)](image)
“Air-Mass” Showers:

- Towering Cumulus Stage
- Mature Stage
- Dissipation Stage