12S56 Circle data

Collected 11/17/2008

<table>
<thead>
<tr>
<th>Data</th>
<th>AT</th>
<th>TO</th>
<th>Angles (deg)</th>
<th>Distance (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td></td>
<td>359.9999</td>
<td>33.476 d2</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td></td>
<td>74.6273</td>
<td>32.221 d1</td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td></td>
<td>0.0001</td>
<td>39.838 d0</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td></td>
<td>51.2465</td>
<td>33.476 d2</td>
</tr>
<tr>
<td>C</td>
<td>A</td>
<td></td>
<td>0.0001</td>
<td>32.220 d1</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td></td>
<td>54.1232</td>
<td>39.838 d0</td>
</tr>
<tr>
<td></td>
<td>O</td>
<td></td>
<td>38.8351</td>
<td>20.656 Center</td>
</tr>
<tr>
<td>a</td>
<td></td>
<td></td>
<td>322.6759</td>
<td>10.032</td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
<td>340.1612</td>
<td>21.625</td>
</tr>
</tbody>
</table>
Solution:
Solution adjustment. The first step in the analysis is to make the angles consistent (i.e., sum to 180 degrees). These adjustments are usually made by distributing the "misclose" (the difference from 180 deg), into each angle inversely proportional to the line lengths. In our case the lengths are all about the same length so we add 0.001 deg to each angle. (This corresponds to mis-pointing by ~0.5 mm over the 33-39 meter distances). The distance measurements all agree in the forward and back directions except for one 1 mm difference. The first measurement was adopted.
(a) Using the geometry from the figure above at site 00, we can write two equations for the radius:

\[
\frac{\sin \alpha_1}{\sin \beta_1} = \frac{c}{a}
\]

The division of these two equations results in the R being canceled and using the expansion of we can write

\[
\sin \alpha_1 = \sin \beta_1 = \frac{c}{a}
\]

By expansion, this equation reduces to:

Using the estimate of \(\alpha_1 \), we can then solve for the radius R.
For each corner point the results are:

(b) To find the radius to each of the intermediate points, we use the data from site C. The cosine rule is used to solve for \(r \) and the sine rule to solve for \(\psi \). To solve these equations we use:

(c) The position of the sprinkler at the center (CEN) and computed by geometry. If the spigot had been exactly at the center, the distance to it would have been 20.658 m (compared to the measured value of 20.656 m). The difference in position places the spigot 0.031 m from the center at \(\psi = -93 \) deg.

The total results are shown in the figure below. (“South” is the direction from the center of
the circle to point A, “East” at right angles to this direction.

Image removed due to copyright restrictions.

The residuals to the mean radius and a function of the angle at the center are in the figure below: .
This project was solved using Matlab code `Proj_3.08.m`. The output of the code (in addition to the figures above is:

12S56 Project Number 3
Sum of angles in triangle is 179.9971 deg, adding 0.0010 to each angle

--------12S56 2008---------------------

Results for each angle/distance pair
Alpha 1 38.7499 Radius 1 20.658
Beta 1 35.8791 Radius 2 20.658
Gamma 1 15.3724 Radius 2 20.658
Mean radius 20.658

Point Radius Drad Angle
B 20.658 0.000 71.7568
a 20.612 -0.046 254.3308
b 20.572 -0.085 219.0855
c 20.680 0.022 146.6871
D 20.692 0.034 104.8668
E 20.631 -0.027 41.5311
F 20.593 -0.064 332.9446

Sprinkler Postion 0.031 (m) at -93.32 deg
>>