
Coding Methodology

How to Design Code

1



©2005

MIT-Africa Internet 
Technology Initiative

Pay Attention to Detail

• When implementing or using APIs 
details are everything.

• Spelling and capitalization.
• Names.
• Argument types.
• Return type.

2



©2005

MIT-Africa Internet 
Technology Initiative

Create a Skeleton

• Type in method signatures with empty 
bodies:
– public static void foo() { }

• For methods with primitive return types, 
declare a dummy variable or return 0:
– private int bar(int x) { int i; return i; }
– double deuce() { return 0.0; }

• For Object return types, return null:
– public String toString() { return null; }

3



©2005

MIT-Africa Internet 
Technology Initiative

Write Test Code

• Write test code that makes calls to your 
skeleton.

• You’ll expect null or zero values and 
can’t call anything on the returned 
objects.

• Start out with really basic tests, like 
instantiating an object.

• Add new tests as you fill in your 
skeleton.

4



©2005

MIT-Africa Internet 
Technology Initiative

Types of Bugs

• Compile time bugs: typos and syntax.
• Logic or control bugs: Correct syntax, 

but incorrect design. Compiles, but code 
does not work as expected.

• Runtime bugs: Bugs that arise from 
data provided at runtime.
– Bad input, divide by zero, null pointers.
– Can be handled with Exceptions.
– Or can cause program to crash.

5



©2005

MIT-Africa Internet 
Technology Initiative

Add Debugging Output

• Put in a lot of println() statements that 
output values of variables for yourself.

• Can add messages like “Entering 
method foo” or “Exiting Method NNN”.

• Can also add debugging messages that 
help you trace program flow through 
control structures. 

• Java 1.4 has java.util.logging package 
that helps with debugging output.

6



©2005

MIT-Africa Internet 
Technology Initiative

Code, Compile, Repeat

• Add some code to a skeleton method.
• Write test code to check the new code.
• Compile your code.
• Run it. 
• Check for correct debugging output.
• Repeat.

7



©2005

MIT-Africa Internet 
Technology Initiative

Philosophies

• Extreme Programming (XP):
– Design test cases first, always test.
– Implement incrementally.
– Design organically (hack).
– Expect to write the same code twice.
– Code in pairs: Typist and shoulder-surfer.

• Old School:
– Design everything on paper.
– Rigid implementation plan.
– Testing and QA is last step.

8



©2005

MIT-Africa Internet 
Technology Initiative

“Debug a Blank Sheet of Paper”
- Dr. Brian Harvey

UC Berkeley

9



MIT OpenCourseWare 
http://ocw.mit.edu

EC.S01 Internet Technology in Local and Global Communities 
Spring 2005-Summer 2005

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

	Coding Methodology
	Pay Attention to Detail
	Create a Skeleton
	Write Test Code
	Types of Bugs
	Add Debugging Output
	Code, Compile, Repeat
	Philosophies
	“Debug a Blank Sheet of Paper”- Dr. Brian HarveyUC Berkeley



