
Lecture 12

Inheritance
MIT-AITI Kenya 2005

June 28th, 2005

1

©2005

MIT-Africa Internet
Technology Initiative

What is Inheritance?

In the real world: We inherit traits from our
mother and father. We also inherit traits from
our grandmother, grandfather, and ancestors.
We might have similar eyes, the same smile,
a different height . . . but we are in many
ways "derived" from our parents.

In software: Object inheritance is more well
defined! Objects that are derived from other
object "resemble" their parents by inheriting
both state (fields) and behavior (methods).

2

©2005

MIT-Africa Internet
Technology Initiative

Masai Class

public class Masai {
private String name;
private int cows;

public Masai(String n, int c) {
name = n;
cows = c;

}

public String getName() { return name; }

public int getCows() { return cows; }

public void speak() {
System.out.println(“Masai");

}
}

3

©2005

MIT-Africa Internet
Technology Initiative

Kikuyu Class

public class Kikuyu {
private String name;
private int money;

public Kikuyu(String n, int m) {
name = n;
money = m;

}

public String getName() { return name; }

public int getMoney() { return money; }

public void speak() {
System.out.println(“Kikuyu");

}
}

4

©2005

MIT-Africa Internet
Technology Initiative

Problem: Code Duplication

• Dog and Cat have the name field
and the getName method in
common

• Classes often have a lot of state
and behavior in common

• Result: lots of duplicate code!

5

©2005

MIT-Africa Internet
Technology Initiative

Solution: Inheritance

• Inheritance allows you to write new classes
that inherit from existing classes

• The existing class whose properties are
inherited is called the "parent" or superclass

• The new class that inherits from the super
class is called the "child" or subclass

• Result: Lots of code reuse!

6

©2005

MIT-Africa Internet
Technology Initiative

Masai
String name
int cows

String getName()
int getCows()
void speak()

Kikuyu
String name
int money

String getName()
int getMoney()
void speak()

using
inheritance

Masai
int cows

int getCows()
void speak()

Kikuyu
int money

int getMoney()
void speak()

Kenyan
String name

String getName()

superclass

subclass

subclass

7

©2005

MIT-Africa Internet
Technology Initiative

Kenyan Superclass

public class Kenyan {

private String name;

public Kenyan(String n) {
name = n;

}

public String getName() {
return name;

}
}

8

©2005

MIT-Africa Internet
Technology Initiative

Masai Subclass
public class Masai extends Kenyan {

private int cows;

public Masai(String n, int c) {
super(n); // calls Kenyan constructor
cows = c;

}

public int getCows() {
return cows;

}

public void speak() {
System.out.println(“Masai");

}
}

9

©2005

MIT-Africa Internet
Technology Initiative

Kikuyu Subclass

public class Kikuyu extends Kenyan {

private int money;

public Kikuyu(String n, int m) {
super(n); // calls Kenyan constructor
money = m;

}

public int getMoney() {
return money;

}

public void speak() {
System.out.println(“Kikuyu");

}
}

10

©2005

MIT-Africa Internet
Technology Initiative

Inheritance Quiz 1

• What is the output of the following?

Masai d = new Masai(“Johnson" 23);
Kikuyu c = new Kikuyu(“Sheila", 2200);
System.out.println(d.getName() + " has " +

d.getCows() + " cows");
System.out.println(c.getName() + " has " +

c.getMoney() + " shillings");

Johnson has 23 cows
Sheila has 2200 shillings

(Masai and Kikuyu inherit the getName method from the
Kenyan super class)

11

©2005

MIT-Africa Internet
Technology Initiative

Inheritance Rules

• Use the extends keyword to indicate that
one class inherits from another

• The subclass inherits all the fields and
methods of the superclass

• Use the super keyword in the subclass
constructor to call the superclass
constructor

12

©2005

MIT-Africa Internet
Technology Initiative

Subclass Constructor

• The first thing a subclass constructor must do
is call the superclass constructor

• This ensures that the superclass part of the
object is constructed before the subclass part

• If you do not call the superclass constructor
with the super keyword, and the superclass
has a constructor with no arguments, then that
superclass constructor will be called implicitly.

13

©2005

MIT-Africa Internet
Technology Initiative

Implicit Super Constructor Call

then this Beef subclass:

public class Beef extends Food {
private double weight;
public Beef(double w) {

weight = w
}

}

is equivalent to:

public class Beef extends Food {
private double weight;
public Beef(double w) {

super();
weight = w

}
}

If I have this Food class:

public class Food {
private boolean raw;
public Food() {

raw = true;
}

}

14

©2005

MIT-Africa Internet
Technology Initiative

Inheritance Quiz 2
public class A {

public A() { System.out.println("I'm A"); }
}

public class B extends A {
public B() { System.out.println("I'm B"); }

}

public class C extends B {
public C() { System.out.println("I'm C"); }

}

What does this print out?

C x = new C();

I'm A
I'm B
I'm C

15

©2005

MIT-Africa Internet
Technology Initiative

• Subclasses can override methods in their superclass

• What is the output of the following?
ThermUS thermometer = new ThermUS(100);
System.out.println(thermometer.getTemp());

class ThermUS extends Therm {

public ThermUS(double c) {
super(c);

}

// degrees in Fahrenheit
public double getTemp() {
return celsius * 1.8 + 32;

}
}

class Therm {
public double celsius;

public Therm(double c) {
celsius = c;

}

public double getTemp() {
return celcius;

}
}

212

Overriding Methods

16

©2005

MIT-Africa Internet
Technology Initiative

Calling Superclass Methods

• When you override a method, you can call
the superclass's copy of the method by
using the syntax super.method()

class Therm {
private double celsius;

public Therm(double c) {
celcius = c;

}

public double getTemp() {
return celcius;

}
}

class ThermUS extends Therm {

public ThermUS(double c) {
super(c);

}

public double getTemp() {
return super.getTemp()

* 1.8 + 32;
}

}

17

©2005

MIT-Africa Internet
Technology Initiative

Which Lines Don't Compile?
public static void main(String[] args) {

Kenyan a1 = new Kenyan();
a1.getName();
a1.getCows();
a1.getMoney();
a1.speak();
Kenyan a2 = new Masai();
a2.getName();
a2.getCows();
a2.getMoney();
a2.speak();
Masai d = new Masai();
d.getName();
d.getCows();
d.getMoney();
d.speak();

}

// Kenyan does not have getCows
// Kenyan does not have getMoney
// Kenyan does not have speak

// Kenyan does not have getCows
// Kenyan does not have getMoney
// Kenyan does not have speak

// Masai does not have getMoney

18

©2005

MIT-Africa Internet
Technology Initiative

Remember Casting?
• "Casting" means "promising" the

compiler that the object will be of a
particular type

• You can cast a variable to the type of
the object that it references to use that
object's methods without the compiler
complaining.

• The cast will fail if the variable doesn't
reference an object of that type.

19

©2005

MIT-Africa Internet
Technology Initiative

Which Castings Will Fail?
public static void main(String[] args) {
Kenyan a1 = new Kenyan();
((Masai)a1).getCows();
((Kikuyu)a1).getMoney();
((Masai)a1).speak();

Kenyan a2 = new Masai();
((Masai)a2).getCows();
((Kikuyu)a2).getMoney();
((Masai)a2).speak();

Masai d = new Masai();
((Kikuyu)d).getMoney();

}

//a1 is not a Masai
//a1 is not a Kikuyu
//a1 is not a Masai

//a2 is not a Kikuyu

//d is not a Kikuyu

20

©2005

MIT-Africa Internet
Technology Initiative

Programming Example

• A Company has a list of Employees. It asks
you to provide a payroll sheet for all
employees.

Has extensive data (name, department, pay
amount, …) for all employees.
Different types of employees – manager,
engineer, software engineer.
You have an old Employee class but need to add
very different data and methods for managers and
engineers.

Suppose someone wrote a name system, and already
provided a legacy Employee class. The old Employee
class had a printData() method for each Employee that
only printed the name. We want to reuse it, and print pay
info.

Borrowed with permission from Course 1.00 Notes21

©2005

MIT-Africa Internet
Technology Initiative

REVIEW PICTURE

Message passing "Main event loop"Encapsulation

public … Main(…){
Employee e1…("Mary","Wang");
...
e1.printData();
// Prints Employee names.
...
}

Employee e1

lastName
firstName

printData

private:

22

©2005

MIT-Africa Internet
Technology Initiative

Employee class
This is a simple super or base class.

class Employee {
// Data
private String firstName, lastName;

// Constructor
public Employee(String fName, String lName) {

firstName= fName; lastName= lName;
}
// Method
public void printData() {

System.out.println(firstName + " " + lastName);}
}

23

©2005

MIT-Africa Internet
Technology Initiative

Inheritance
Class Employee

firstName
lastName

printData()

Class Manager

salary

firstName
lastName

Class Engineer

hoursWorked
wages

firstName
lastName

printData()
getPay()

is-a

printData()
getPay()

Already written:

is-a

You next write:
24

©2005

MIT-Africa Internet
Technology Initiative

Engineer class
Subclass or (directly) derived class

class Engineer extends Employee {
private double wage;
private double hoursWorked;
public Engineer(String fName, String lName,

double rate, double hours) {
super(fName, lName);
wage = rate;
hoursWorked = hours;

}
public double getPay() {

return wage * hoursWorked;
}
public void printData() {

super.printData(); // PRINT NAME
System.out.println("Weekly pay: $" + getPay(); }

}

25

©2005

MIT-Africa Internet
Technology Initiative

Manager class
Subclass or (directly) derived class

class Manager extends Employee {
private double salary;

public Manager(String fName, String lName, double sal){
super(fName, lName);
salary = sal; }

public double getPay() {
return salary; }

public void printData() {
super.printData();
System.out.println("Monthly salary: $" + salary);}

}

26

©2005

MIT-Africa Internet
Technology Initiative

Inheritance…

Class Manager

Salary

firstName
lastName

printData
getPay

Class SalesManager
firstName
lastName

printData
getPay

Salary

salesBonus

is-a

27

©2005

MIT-Africa Internet
Technology Initiative

SalesManager Class
(Derived class from derived class)

class SalesManager extends Manager {
private double bonus; // Bonus Possible as commission.

// A SalesManager gets a constant salary of $1250.0
public SalesManager(String fName, String lName, double b) {

super(fName, lName, 1250.0);
bonus = b; }

public double getPay() {
return 1250.0; }

public void printData() {
super.printData();
System.out.println("Bonus Pay: $" + bonus; }

}

28

©2005

MIT-Africa Internet
Technology Initiative

Main method
public class PayRoll {
public static void main(String[] args) {

// Could get Data from tables in a Database.
Engineer fred = new Engineer("Fred", "Smith", 12.0, 8.0);
Manager ann = new Manager("Ann", "Brown", 1500.0);
SalesManager mary= new SalesManager("Mary", "Kate", 2000.0);

// Polymorphism, or late binding
Employee[] employees = new Employee[3];
employees[0]= fred;
employees[1]= ann;
employees[2]= mary;
for (int i=0; i < 3; i++)

employees[i].printData();
}

}

Java knows the
object type and
chooses the
appropriate method
at run time

29

©2005

MIT-Africa Internet
Technology Initiative

Output from main method
Fred Smith
Weekly pay: $96.0
Ann Brown
Monthly salary: $1500.0
Mary Barrett
Monthly salary: $1250.0
Bonus: $2000.0

Note that we could not write:
employees[i].getPay();

because getPay() is not a method of the superclass Employee.

In contrast, printData() is a method of Employee, so Java can find the
appropriate version.

30

©2005

MIT-Africa Internet
Technology Initiative

Object Class

• All Java classes implicitly inherit from
java.lang.Object

• So every class you write will automatically
have methods in Object such as equals,
hashCode, and toString.

• We'll learn about the importance of some
of these methods in later lectures.

31

MIT OpenCourseWare
http://ocw.mit.edu

EC.S01 Internet Technology in Local and Global Communities
Spring 2005-Summer 2005

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

	What is Inheritance?
	Masai Class
	Kikuyu Class
	Problem: Code Duplication
	Solution: Inheritance
	Kenyan Superclass
	Masai Subclass
	Kikuyu Subclass
	Inheritance Quiz 1
	Inheritance Rules
	Subclass Constructor
	Implicit Super Constructor Call
	Inheritance Quiz 2
	Overriding Methods
	Calling Superclass Methods
	Which Lines Don't Compile?
	Remember Casting?
	Which Castings Will Fail?
	Programming Example
	Object Class

