

Lecture 3: Operators

Kenya 2005

Lecture Outline

- What operators are
- Arithmetic Operators such as +, -
- Assignment Operator
- Increment/Decrement Operators e.g i++
- Relational Operators
- Conditional Operators

What are Operators?

- Operators are special symbols used for:
- mathematical functions
- assignment statements
- logical comparisons
- Examples of operators:

$$
\begin{array}{lc}
3+5 & \text { // uses + operator } \\
14+5-4 *(5-3) & / / \text { uses }+,-,{ }^{*} \text { operators }
\end{array}
$$

- Expressions can be combinations of variables, primitives and operators that result in a value

The Operator Groups

- There are 5 different groups of operators:
- Arithmetic Operators
- Assignment Operator
- Increment / Decrement Operators
- Relational Operators
- Conditional Operators
- The following slides will explain the different groups in more detail.

Arithmetic Operators

- Java has 6 basic arithmetic operators :

+	add
-	subtract
$*$	multiply
$/$	divide
$\%$	modulo (remainder)
\wedge	exponent (to the power of)

- The order of operations (or precedence) when evaluating an expression can be summarized in the acronym PEMDAS.

Order Of Operations

- Order of Operations (PEMDAS)

1. Parentheses
2. Exponents
3. Multiplication and Division from left to right
4. Addition and Subtraction from left to right

- An easy way to remember this is:
"Please Excuse My Dear Aunt Sally"

Order of Operations (Cont'd)

- Example: 10 + 15 / 5;
- The result is different depending on whether the addition or division is performed first

$$
\begin{aligned}
& (10+15) / 5=5 \\
& 10+(15 / 5)=13
\end{aligned}
$$

Without parentheses, Java will choose the second case

- Note: you should be explicit and use parentheses to avoid confusion

Integer Division

- In the previous example, we were lucky that $(10+15) / 5$ gives an exact integer answer (5).
- But what if we divide 63 by 35 ?
- Depending on the data types of the variables that store the numbers, we will get different results.

Integer Division (Cont'd)

- int i = 63;
int j = 35;
System.out.println(i / j);
Output: 1
- double x = 63; double y = 35;
System.out.println(x / y);
Ouput: 1.8
- The result of integer division is just the integer part of the quotient!

Assignment Operator

- The basic assignment operator (=) assigns the value of expr to var

$$
\text { var }=\text { expr ; }
$$

- Java allows you to combine arithmetic and assignment operators into a single operator
- Examples:

$$
\begin{array}{ll}
x=x+5 ; \text { is equivalent to } & x+=5 ; \\
y=y * 7 ; \text { is equivalent to } & y *=7 ;
\end{array}
$$

Increment/Decrement Operators

- ++ is called the increment operator. It is used to increase the value of a variable by 1 .

For example:
i $=i+1$; can be written as:
++i; or i++;

- - - is called the decrement operator. It is used to decrease the value of a variable by 1.

```
i = i - 1; can be written as:
--i; or i--;
```


Increment Operators (cont’d)

- The increment / decrement operator has two forms :
- Prefix Form e.g ++i; --i;
- Postfix Form e.g i++; i--;

Prefix increment /decrement

- The prefix form first adds/ subtracts 1 from the variable and then continues to any other operator in the expression
- Example:

```
int numOranges = 5;
int numApples = 10;
int numFruit;
numFruit = ++numOranges + numApples;
```

numFruit has value 16
numOranges has value 6

Postfix Increment/ Decrement

- The postfix form i++, i-- first evaluates the entire expression and then adds 1 to the variable
- Example:

```
int numOranges = 5;
    int numApples = 10;
    int numFruit;
    numFruit = numOranges++ + numApples;
    numFruit has value 15
    numOranges has value 6
```


Relational (Comparison) Operators

- Relational operators compare two values
- They Produce a boolean value (true or false) depending on the relationship

Operation	$\ldots .$. Is true when		
$\mathbf{a}>\mathbf{b}$	\mathbf{a} is greater than \mathbf{b}		
$\mathbf{a}>=\mathbf{b}$	\mathbf{a} is greater than or equal to \mathbf{b}		
$\mathbf{a}==\mathbf{b}$	\mathbf{a} is equal to \mathbf{b}		
$\mathbf{a}!=\mathbf{b}$	\mathbf{a} is not equal to \mathbf{b}		
$\mathbf{a}<=\mathbf{b}$	\mathbf{a} is less than or equal to \mathbf{b}		
$\mathbf{a}<\mathbf{b}$	\mathbf{a} is less than \mathbf{b}		
sign!			
MIT-Africa Internit			

Examples of Relational Operations

int x = 3;
int $y=5 ;$
boolean result;

1) result = (x > y);
now result is assigned the value false because
3 is not greater than 5
2) result $=\left(15==x^{*} y\right)$;
now result is assigned the value true because the product of 3 and 5 equals 15
3) result = (x != $x^{*} y$); now result is assigned the value true because the product of x and y (15) is not equal to x

Conditional Operators

Symbol	Name	
$\& \&$	AND	
$\\|$	OR	
$!$	NOT	

- Conditional operators can be referred to as boolean operators, because they are only used to combine expressions that have a value of true or false.

Truth Table for Conditional Operators

\mathbf{x}	\mathbf{y}	$\mathbf{x} \& \boldsymbol{y} \mathbf{y}$	$\mathbf{x ~ \| \| ~} \mathbf{y}$!x
True	True	True	True	False
True	False	False	True	False
False	True	False	True	True
False	False	False	False	True

Examples of Conditional Operators

boolean x = true;
boolean y = false;
boolean result;

1. Let result = (x \&\& y);
now result is assigned the value false (see truth table!)
2. Let result $=((x| | y) \& \& x)$;

$$
\begin{array}{ll}
(x \| y) & \text { evaluates to true } \\
(\operatorname{true} \& \& x) & \text { evaluates to true }
\end{array}
$$

now result is assigned the value true

Using \&\& and ||

- Java performs short-circuit evaluation: By this we mean that it evaluates \&\& and expressions from left to right and once it finds the result, it stops.
- Examples:

$$
\begin{aligned}
& (a \text { \&\& }(b++>3)) \\
& (x \| y)
\end{aligned}
$$

- Java will evaluate these expressions from left to right and so will evaluate
a before (b++ > 3)
x before y

Short-Circuit Evaluation

(a \&\& (b++ > 3));
What happens if a is false?

- Java will not evaluate the right-hand expression (b++ >3) if the left-hand operator a is false, since the result is already determined in this case to be false. This means b will not be incremented!
(x || y);
What happens if x is true?
- Similarly, Java will not evaluate the right-hand operator y if the left-hand operator x is true, since the result is already determined in this case to be true.

POP QUIZ

1) What is the value of number? int number $=5$ * $3-3 / 6-9$ * 3;
2)What is the value of result?
int $x=8$;
int y = 2;
boolean result $=(15==x$ * $y)$;
2) What is the value of result? boolean $\mathrm{x}=7$; boolean result $=(x<8) \& \&(x>4) ;$
3) What is the value of numCars? int numblueCars = 5; int numGreenCars = 10; int numCars = numGreenCars++ + numBlueCars + ++numGreeenCars;

POP Quiz Solutions

1) What is the value of number? -12 int number $=5$ * $3-3 / 6-9$ * 3 ;
2) What is the value of result? false int $x=8 ;$ int y = 2; boolean result $=(15==x$ * $y)$;
3) What is the value of result? true boolean $x=7$; boolean result $=(x<8) \& \&(x>4)$;
4) What is the value of numcars? int numbluecars = 5; int numGreenCars = 10; int numCars = numGreenCars++ + numBlueCars + ++numGreeenCars;

Reference

- Summary of Java operators

MIT-Africa Internet
Technology Initiative ©2005

This Lecture Covered....

- What Operators are
- The different types of operators
- The order of Operations for arithmetic operators
- Prefix and Postfix operators
- Short Circuit Evaluation

MIT OpenCourseWare
|http://ocw.mit.edu

EC.S01 Internet Technology in Local and Global Communities

Spring 2005-Summer 2005

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

