Q1. There are two urns, A and B, each consisting of 100 balls, some are black and some are red. In urn A there are 30 red balls, but the number of red balls in urn B is not known. We draw a ball from urn A with color \(\alpha \) and a ball from urn B with color \(\beta \). Consider the following acts:

\[
\begin{align*}
 f_{A,r} &= \begin{cases}
 100 & \text{if } \alpha = \text{red} \\
 0 & \text{if } \alpha = \text{black}
 \end{cases} \\
 f_{A,b} &= \begin{cases}
 0 & \text{if } \alpha = \text{red} \\
 100 & \text{if } \alpha = \text{black}
 \end{cases} \\
 f_{B,r} &= \begin{cases}
 110 & \text{if } \beta = \text{red} \\
 0 & \text{if } \beta = \text{black}
 \end{cases} \\
 f_{B,b} &= \begin{cases}
 0 & \text{if } \beta = \text{red} \\
 110 & \text{if } \beta = \text{black}
 \end{cases}
\end{align*}
\]

Let \(c \) be the choice function induced by \(\succeq \). Find the sets \(c(\{ f_{A,r}, f_{A,b}, f_{B,r}, f_{B,b} \}) \) that are consistent with \(110 > 100 > 0 \) and Savages postulates.

In the terminology of Lecture 3, the set of states is

\[
\{(\alpha, \beta)\} = \{(r, r), (r, b), (b, r), (b, b)\},
\]

and the set of consequences is \(C = \{0, 100, 110\} \). Under Savage’s postulates, there exists a utility function \(u : C \to \mathbb{R} \) and a probability measure \(p : 2^S \to [0, 1] \) such that

\[
f \succeq g \iff \sum_{c \in C} p(\{s | f(s) = c\})u(c) \geq \sum_{c \in C} p(\{s | g(s) = c\})u(c).
\]

From \(110 > 100 > 0 \), we have \(u(110) > u(100) > u(0) \). For any probability measure \(p \), we have

\[
0.7 \ast u(100) + 0.3 \ast u(0) = \sum_{c \in C} p(\{s | f_{A,b}(s) = c\})u(c) \\
> \sum_{c \in C} p(\{s | f_{A,r}(s) = c\})u(c) = 0.3 \ast u(100) + 0.7 \ast u(0),
\]

and \(f_{A,b} \succ f_{A,r} \).

On the other hand, the expected utility from \(f_{B,r} \) and \(f_{B,b} \) are

\[
\sum_{c \in C} p(\{s | f_{B,r}(s) = c\})u(c) = p(\beta = \text{red})u(110) + p(\beta = \text{black})u(0),
\]

\[
\sum_{c \in C} p(\{s | f_{B,b}(s) = c\})u(c) = p(\beta = \text{red})u(0) + p(\beta = \text{black})u(110),
\]

and \(f_{A,b} \succ f_{A,r} \).

On the other hand, the expected utility from \(f_{B,r} \) and \(f_{B,b} \) are

\[
\sum_{c \in C} p(\{s | f_{B,r}(s) = c\})u(c) = p(\beta = \text{red})u(110) + p(\beta = \text{black})u(0),
\]

\[
\sum_{c \in C} p(\{s | f_{B,b}(s) = c\})u(c) = p(\beta = \text{red})u(0) + p(\beta = \text{black})u(110),
\]
respectively.

The preference among \(f_{A,b}, f_{B,r}, f_{B,b} \) depends on the probability measure and the utility function, and the possible choice sets \(c\{f_{A,r}, f_{A,b}, f_{B,r}, f_{B,b}\} \) are

\[
\{f_{A,b}\}, \{f_{B,r}\}, \{f_{B,b}\}, \{f_{A,b}, f_{B,r}\}, \{f_{B,r}, f_{B,b}\}, \{f_{A,b}, f_{B,r}, f_{B,b}\}.
\]

The following is the example of \(p \) and \(u \) for each choice set:

\[
\begin{align*}
\{f_{A,b}\} & : u(0) = 0, u(100) = 0.9, u(110) = 1, p = 0.5 \\
\{f_{B,r}\} & : u(0) = 0, u(100) = 0.9, u(110) = 1, p = 0.7 \\
\{f_{B,b}\} & : u(0) = 0, u(100) = 0.9, u(110) = 1, p = 0.3 \\
\{f_{A,b}, f_{B,r}\} & : u(0) = 0, u(100) = 0.9, u(110) = 1, p = 0.63 \\
\{f_{A,b}, f_{B,b}\} & : u(0) = 0, u(100) = 0.9, u(110) = 1, p = 0.37 \\
\{f_{B,r}, f_{B,b}\} & : u(0) = 0, u(100) = 0.7, u(110) = 1, p = 0.5 \\
\{f_{A,b}, f_{B,r}, f_{B,b}\} & : u(0) = 0, u(100) = 1, u(110) = 1.4, p = 0.5
\end{align*}
\]

Q2. (6.1.19 in MWG) Suppose that an individual has a Bernoulli utility function \(u(x) = -e^{-\alpha x} \) where \(\alpha > 0 \). His (nonstochastic) initial wealth is given by \(w \). There is one riskless asset and there are \(N \) risky assets. The return per unit invested on the riskless asset is \(r \). The returns of the risky assets are independent and normally distributed with means \(\mu = (\mu_1, \ldots, \mu_N) \). Derive the demand function for these \(N + 1 \) assets.

Let \((\sigma_1^2, \ldots, \sigma_N^2)\) be the variances of the risky assets. When the portfolio is \((\alpha_0, \ldots, \alpha_N)\) with \(\sum \alpha_i = 1 \), the expected return is

\[
\begin{align*}
\mathbb{E}[- \exp(-\alpha w (\alpha_0, \ldots, \alpha_N) (r, \ldots, r_N))] &= - \exp(-\alpha w (\alpha_0 r + \sum_{i>0} \alpha_i (\mu_i - \frac{1}{2} \alpha w \alpha_i \sigma_i^2))).
\end{align*}
\]

The expected return is maximized when

\[
\alpha_0 r + \sum_{i>0} \alpha_i (\mu_i - \frac{1}{2} \alpha w \alpha_i \sigma_i^2)
\]

is maximized, and the constraint is

\[
\sum \alpha_i = 1.
\]
We have
\[\frac{\partial}{\partial \alpha_i} : -r + \mu_i - \alpha w \sigma_i^2 = 0, \]
and
\[\alpha_i = \frac{\mu_i - r}{\alpha w \sigma_i^2}. \]

Q3. (6.D.3 in MWG) Verify that if a distribution $G(\cdot)$ is an elementary increase in risk from a distribution $F(\cdot)$, then $F(\cdot)$ second-order stochastically dominates $G(\cdot)$.

Let $G(\cdot)$ be an elementary increase from $F(\cdot)$ on the interval $[x', x'']$, and define $I(x) = \int_{x'}^{x} [F(t) - G(t)]dt$. $I(x') = 0$, and by the definition of G, $I(x'') = 0$, $I(x) \leq 0$, $\forall x \in [x', x'']$.

\[\int_{x'}^{x''} u(x)d(F(x) - G(x)) = -\int_{x'}^{x''} u'(x)(F(x) - G(x))dx = \int_{x'}^{x''} u''(x)I(x)dx, \]
and together with $u'' < 0$,

\[\int_{x'}^{x''} u(x)d(F(x) - G(x)) \geq 0 \]
for any nondecreasing concave function u.

Specifically, define $G(\cdot)$ as

\[G(x) = \begin{cases}
F(x) & \text{if } x \notin [x', x''] \\
\frac{\int_{x'}^{x''} F(t)dt}{x'' - x'} & \text{if } x \in [x', x''].
\end{cases} \]

This corresponds to $y \sim G, x \sim F, y = x + z$ with

\[z|x = \begin{cases}
x' - x & \text{with probability } \frac{x'' - x}{x'' - x'} \\
x'' - x & \text{with probability } \frac{x'' - x'}{x'' - x'}.
\end{cases} \]

Q4. Consider a monopolist who faces a stochastic demand. If he produces q units, he incurs a zero marginal cost and sells the good at price $P(\theta, q)$ where $\theta \in [\theta, \theta]$ is an unknown demand shock where P and C twice differentiable. Assume that the profit function is strictly concave in q for each given θ, and $P(\theta, q) + qP_q(\theta, q)$ is increasing in θ, where P_q is the derivative of P with respect to θ. The monopolist is expected profit maximizer.

(a) Show that there exists a unique optimal production level q^*.

3
(b) Show that if the distribution of θ changes from G to F where F first-order stochastically dominates G, then the optimal production level q^* weakly increases.

(c) Take $P(\theta, q) = \phi(\theta) - \gamma(q)$. Suppose that there are two identical monopolists as above in two independent but identical markets. Find conditions under which the monopolists have a strict incentive to merge and share the profit from each market equally.

(a) Given the zero marginal cost, the monopolist maximizes $\int qP(\theta, q)dF(\theta)$. The profit function is strictly concave in q for every θ

$$\iff \frac{\partial^2}{\partial q^2}(qP(\theta, q)) < 0 \forall \theta, q,$$

and we have

$$\int \frac{\partial^2}{\partial q^2}(qP(\theta, q))dF(\theta) < 0.$$

The maximization problem is strictly concave, and there exists a unique optimum q^*.

(b) Let q_G and q_F be the optimum for G and F, respectively. We have

$$\int (P(\theta, q_G) + q_GP_q(\theta, q_G))dG(\theta) = 0.$$

Since $P(\theta, q) + q_GP_q(\theta, q)$ is increasing in θ, when F first-order stochastically dominates G,

$$0 = \int (P(\theta, q_F) + q_FP_q(\theta, q_F))dF(\theta)$$

$$= \int (P(\theta, q_G) + q_GP_q(\theta, q_G))dG(\theta)$$

$$\leq \int (P(\theta, q_F) + q_GP_q(\theta, q_F))dF(\theta).$$

By the concavity of the maximization problem, $\int (P(\theta, q) + q_GP_q(\theta, q))dF(\theta)$ is strictly decreasing in q, and the optimum for F weakly increases.

(c) If two monopolists share the profit equally, their expected profit is

$$\frac{1}{2} \max_{q_1, q_2} \mathbb{E}[q_1(\phi(\theta_1) - \gamma(q_1)) + q_2(\phi(\theta_2) - \gamma(q_2))]$$

$$= \frac{1}{2} \max_{q_1, q_2}((q_1 + q_2)\mathbb{E}[\phi(\theta)] - q_1\gamma(q_1) - q_2\gamma(q_2)).$$
The profit function is concave in q, which implies that $-q\gamma(q)$ is concave in q. By Jensen’s inequality, the optimal q_1 is the same as q_2. Let $q = q_1 + q_2$, then

$$\frac{1}{2}\max_{q_1,q_2}\mathbb{E}[q_1(\phi(\theta_1) - \gamma(q_1)) + q_2(\phi(\theta_2) - \gamma(q_2))]
= \frac{1}{2}\max_q(q\mathbb{E}[\phi(\theta)] - q\gamma(\frac{q}{2}))
= \max(\frac{q}{2}\mathbb{E}[\phi(\theta)] - \frac{q}{2}\gamma(\frac{q}{2})),$$

and the monopolists choose the same quantity as before. They will never have a strict incentive to merge.