14.123 Microeconomic Theory III. 2014

Problem Set 2. Solution.

Anton Tsoy

1. In all counter-examples, I use $s = \frac{1}{3}$, $c = 1$ and suppose that whenever indifferent between n and n', Ann chooses cruder partition. In counter-examples, acts are constant on $[0, \frac{1}{2}]$ and $(\frac{1}{2}, 1]$ and so, it is optimal for Ann to choose only between $n = 0, 1$. I also use notation $E[u(f(s)) : B] = \int_B u(f(s))ds$ and $E_n[u(f(s)) : B] =$

\[\int_{B \cap (\frac{1}{2}, \frac{1}{2})} u(f(s))ds \]

1.1 Completeness holds. Given n the preferences are complete. Since $u(f(s))$ is bounded, without loss of generality, I can restrict the choice of n to some finite set and so, optimal n exists.

\[-1 \quad s < \frac{1}{2}, \quad h(s) = \begin{cases} 2 & s < \frac{1}{2}, \\ 1 & s \geq \frac{1}{2}; \end{cases} \quad g(s) = \begin{cases} -2 & s \geq \frac{1}{2}; \end{cases} \]

0. Then $f \sim_s g$ (for $n = 0$, both give expected utility 0; for $n = 1$, Ann’s expected utility is $\frac{1}{2} < c$ and so, $n = 0$ is optimal)

and $g \sim_s h$ (for $n = 0$, both give expected utility 0; for $n = 1$, Ann’s expected utility is $\frac{1}{2}0 + \frac{1}{2}2 = 1 = c$ and so, $n = 0$ is optimal),

but $h \succ_s f$ (for $n = 0$, both give expected utility 0; for $n = 1$, Ann’s expected utility is $\frac{1}{2}1 + \frac{1}{2}2 = \frac{3}{2} > c$ and so, $n = 1$ is optimal).

1.2 Transitivity fails. Consider $f(s) = \begin{cases} -1 & s < \frac{1}{2}, \\ 2 & s \geq \frac{1}{2}; \end{cases}$, $h(s) = \begin{cases} 2 & s < \frac{1}{2}, \\ -2 & s \geq \frac{1}{2}; \end{cases}$

\[g(s) = \begin{cases} 1 & s \geq \frac{1}{2}; \end{cases} \]

0. Then $f \sim_s g$ (for $n = 0$, both give expected utility 0; for $n = 1$, Ann’s expected utility is $\frac{1}{2} < c$ and so, $n = 0$ is optimal)

and $g \sim_s h$ (for $n = 0$, both give expected utility 0; for $n = 1$, Ann’s expected utility is $\frac{1}{2}0 + \frac{1}{2}2 = 1 = c$ and so, $n = 0$ is optimal),

but $h \succ_s f$ (for $n = 0$, both give expected utility 0; for $n = 1$, Ann’s expected utility is $\frac{1}{2}1 + \frac{1}{2}2 = \frac{3}{2} > c$ and so, $n = 1$ is optimal).

1.3 P2 holds. Let f, f', g, g' be defined as in P2 in the lecture notes for some $B \subset S$.

Let n and n' be optimal levels of contemplation for comparison of f and g, and f' and g', respectively. Observe that $n = n'$, since

\[E_n[u(f(s)) - E_n[u(g(s))] = E_n[u(f(s)) : B] - E_n[u(g(s)) : B] = \]

\[= E_n[u(f'(s)) : B] - E_n[u(g'(s)) : B] = E_n[u(f'(s)) - E_n[u(g'(s))]. \]

Then

\[f \succeq_s g \iff E_n[u(f(s)) \geq E_n[u(g(s))] \iff E_n[u(f(s)) : B] \geq E_n[u(g(s)) : B] \iff \]

\[\iff E_n[u(f'(s)) : B] \geq E_n[u(g'(s)) : B] \iff E_n[u(f'(s)) \geq E_n[u(g'(s)) \iff f' \succeq_s g'. \]

1
1.4 P3 holds. Consider \(x, x' \) and \(f = x^h_{|B}, f' = x'^h_{|B} \) for some act \(h \in F \) and \(B \subset S \). Observe that \(n = 0 \) is optimal for comparison of \(f \) and \(f' \), as \(f \) is (weakly) better than \(f' \) state by state. Therefore, \(f \succ f' \iff \mathbb{E}u(f(s)) > \mathbb{E}u(f'(s)) \iff x \succ x' \), since \(B \) is non-null.

1.5 P4 fails. Consider \(A = [0, \frac{1}{2}], B = (\frac{1}{2}, 1], \) and \(x = 1, x' = -1, y = 2, y' = -2. \) Then \(f_A \sim_s f_B \) (for \(n = 0 \), both give expected utility 0; for \(n = 1 \), Ann’s expected utility is 1, but she needs to incur contemplation costs \(c = 1 \) and so, \(n = 0 \) is optimal), but \(g_A \succ_s g_B \) (as before, for \(n = 0 \), both give expected utility 0; for \(n = 1 \) Ann’s expected utility is 2 which after subtracting contemplation costs gives payoff 1 and so, \(n = 1 \) is optimal).

1.6 P5 holds by the assumption that \(Z \) contains at least two elements.

2. I am looking for a concave utility function \(u \in \mathcal{U} \) that satisfies

\[
\frac{1}{2}u(\omega_0 + G) + \frac{1}{2}u(\omega_0 - L) = u(\omega_0) \quad \text{and} \quad \frac{6}{5}u(\omega_0 + 100) + \frac{4}{5}u(\omega_0 - 100) = u(\omega_0)
\]

with the smallest reward \(G \). To find such \(G \), I need to find \(u \in \mathcal{U} \) such that the utility gain from \(G \) is as big as possible, and the utility loss from \(L \) is as small as possible. Given the restriction to concave functions, it’s clear that the optimal \(u \) should be linear on intervals where it is not specified by constraints on \(u \) and should match the derivatives at the boundaries of intervals.

2.1 Here, \(u \) is only specified at three points \((\omega_0, u(\omega_0)), (\omega_0 + 1, u(\omega_0 + 1)), (\omega_0 - 1, u(\omega_0 - 1))\), so we do linear extrapolation on the rest of the domain. Therefore,

\[
\frac{u(\omega_0 + G) - u(\omega_0)}{u(\omega_0) - u(\omega_0 - L)} = \frac{2G}{3L},
\]

and at the same time

\[
\frac{u(\omega_0 + G) - u(\omega_0)}{u(\omega_0) - u(\omega_0 - L)} = 1,
\]

so \(G = 150000. \)

2.2 Here, \(u \) is specified only on \([\omega_0 - 100, \omega_0 + 100]\). From \(.6e^{-\alpha(\omega_0+1)} + .4e^{-\alpha(\omega_0-1)} = e^{-\alpha \omega_0} \), find \(\alpha = \ln 1.5 \) and so, \(u'(\omega_0 + 100) = \ln 1.5(1.5)^{-(\omega_0 + 100)} \) and \(u'(\omega_0 - 100) = \ln 1.5(1.5)^{-(\omega_0 - 100)} \). By the linearity of \(u \) outside \([\omega_0 - 100, \omega_0 + 100]\),

\[
u(\omega_0 + 100 + (G - 100)) = u(\omega_0 + 100) + u'(\omega_0 + 100)(G - 100),
\]

2
\[u(\omega_0 - 100 - (L - 100)) = u(\omega_0 - 100) - u'(\omega_0 - 100)(L - 100). \]

Now using the second indifference condition, we get

\[G = 100 + \frac{-2 + 1.5^{100} + 1.5^{-100} + \ln 1.5(1.5)^{100}(L - 100)}{\ln 1.5(1.5)^{-100}}. \]

2.3 From the previous part \(\alpha = \ln 1.5 \) and so, \(\left(\frac{2}{3}\right)^G + \left(\frac{2}{3}\right)^{-L} = 2 \) which is not possible.

2.4 Let \(x = \omega_0^{-1} \). By CRRA specification,

\[.6(1 + x)^{1-\rho} + .4(1 - x)^{1-\rho} = 1 = .5(1 + Gx)^{1-\rho} + .5(1 - Lx)^{1-\rho}. \]

By \(\omega_0 \geq L \gg 0 \), we have \(x \ll 0 \) and so, we could take the Taylor expansion of the first equation to get

\[.6(1 - \rho)x + .6(1 - \rho)\rho \frac{x^2}{2} = .4(1 - \rho)x - .4(1 - \rho)\rho \frac{x^2}{2} + o(x^2) \]

or \(\rho x = .4 + o(x^2) \) and so, \(\rho \gg 1 \). Now \((1 - Lx)^{1-\rho} \geq \exp(Lx(\rho - 1)) \approx \exp(.4L\frac{\rho - 1}{\rho}) \gg 2 \) and so, it is impossible to find appropriate \(G \).