14.127 Lecture 7

Xavier Gabaix

March 18, 2004
1 Learning in games

- Drew Fudenberg and David Levine, The Theory of Learning in Games
1.1 Fictitious play

- Let γ_t^i denotes frequencies of i’s opponents play

$$\gamma_t^i(s_{-i}) = \frac{\text{number of times } s_{-i} \text{ was played till now}}{t}$$

- Player i plays the best response $BR(\gamma_t^i)$

- Big concerns:
 - Asymptotic behavior: do we converge or do we cycle?
 - If we converge, then to what subset of Nash equilibria?

- Caveat. Empirical distribution need not converge
1.2 Replicator dynamics

- Call $\theta^i_t(s^i) = \text{fraction of players of type } i \text{ who play } s_i$.

- Postulate dynamics

 - In discrete time

 $$\vec{\theta}^i_{t+1} = (\theta^i_{t+1}(s_1), \ldots, \theta^i_{t+1}(s_n)) = \vec{\theta}^i_t + \lambda \left(BR(\vec{\theta}^{-i}_t) - \vec{\theta}^i_t \right)$$

 - In continuous time

 $$\frac{d}{dt} \vec{\theta}^i_{t+1} = \lambda \left(BR(\vec{\theta}^{-i}_t) - \vec{\theta}^i_t \right)$$

- Then analyze the dynamics: chaos, cycles, fixed points
1.3 Experience weighted attraction model, EWA

- Camerer-Ho, Econometrica 1999

- Denote $N_t =$number of “observation equivalent” past responses such that

$$N_{t+1} = \rho N_t + 1$$

- Denote

 - s_{ij} — strategy j of player i

 - $s_i(t)$ — strategy that i played at t

 - $\pi_i(s_{ij}, s_{-i}(t))$ — payoff of i
• Perceived payoff with parameter $\phi \in [0, 1]$

$$A_{ij}(t) = \frac{1}{N_t} \left[\phi N_{t-1} A_{ij}(t-1) + \left(\delta + (1 - \delta) 1_{s_{ij}=s_i(t)} \right) \pi_i (s_{ij}, s_{-i}(t)) \right]$$

• Attraction to strategy j

$$\rho_{ij}(t) = \frac{e^{\lambda A_{ij}(t)}}{\sum_{j'} e^{\lambda A_{ij'}(t)}}$$

• At time $t + 1$ player i plays j with probability $\rho_{ij}(t)$

• Free parameters: $\delta, \phi, \rho, A_{ij}(0), N(0)$
• Some cases

 – If $\delta = 0$ – reinforcement learning (called also law of effect). You only reinforce strategies that you actually played

 – If $\delta > 0$ – law of simulated effect

 – If $\phi = 0$ – agent very forgetful

• Proposition. If $\phi = \rho$ and $\delta = 1$ then EWA is a belief-based model. Makes predictions of fictitious play.

• If $N(0) = \infty$ and $A_{ij}(0) =$ equilibrium payoffs then EWA agent is a dogmatic game theorist.
1.3.1 Functional EWA (f-EWA)

- Has just one parameters. Other endogenized. But still looks like data fitting.

- Camerer, Ho, and Chong working paper

- They look after parameters that fit all the games

- They R^2 is good

- Other people in this field: Costa-Gomez, Crawford, Erev
1.3.2 Critique

- Those things are more endogenous than postulated.

- E.g. fictitious play guy does not detect trends, but people do detect trends.

- How do you model patterns, how do you detect patterns. Whole field of pattern recognition in cognitive psychology.

- If you are interested in strategy number 1069, then strategy 1068 should benefit also. There is some smoothing.
1.4 Cognitive hierarchy model of one-shot games

- Camerer - Ho, QJE forthcoming

- s_i^j – strategy j of player i and $\pi_i(s_i, s_{-i})$ – profit of player i

- Each level 0 player:
 - just postulates that other players play at random with probability $\frac{1}{N}$
 - best responses to that belief
• Each level k player:

 - thinks that there is a fraction of players of levels $h \in \{0, \ldots, k - 1\}$

 - proportions are $g_k(h) = \frac{f(h)}{\sum_{h'=0}^{k-1} f(h')}$ and $g_k(h) = 0$ for $h \geq k$

 - k-players best response to this belief

• Camerer-Ho postulate a Poisson distribution for f with parameter τ,

 $$f(k) = e^{-\tau} \frac{\tau^k}{k!}$$

 with $Ek = \sum_{k \geq 0} k f(k) = \tau$.

• The authors calibrate to empirical data and find the average $\tau \simeq 1.5$.
1.5 An open problem – asymmetric information

- James has a plant with value V uniformly distributed over $[0, 100]$.

- James knows V, you don’t

- You are a better manager than James; the value to you is $\frac{3}{2}V$

- You can make a take it or leave it offer to James of x.

- What you would do?
• Empirically people offer between 50 and 75. But that is not the rational value.

• **Proposition.** The rational offer is 0.

• **Proof.** You offer x.

 - If $V > x$ then James refuses, and your payoff $W = 0$.

 - If $V \leq x$ then V is uniformly distributed between 0 and x. Hence your expected value is $W = \frac{3}{2} \cdot \frac{x}{2} - x = -\frac{x}{4}$.

 - Hence best you can do is set $x = 0$. QED
1.5.1 How to model people’s choice?

• This game is not covered by cognitive hierarchy model. It is a single person decision problem.

• Maybe people approximate V by, for example, a unit mass at the mean $V = 50$?

• Other question. You own newspaper stand. You can buy newspaper for $1 and have a chance to sell for $4. There are no returns. The demand is uniform between 50 and 150. How many would you buy?

• Something along those lines will be in Problem Set 3.