Example 1. Consider the following simple function

\[h(x) = -x^3 + x \]

then clearly \(\bar{x} = 0 \) is the unique steady state of \(x_{t+1} = h(x_t) \). It is also globally stable. This follows since \(-x^3 < 0 \) for \(x > 0 \) and \(-x^3 > 0 \) for \(x < 0 \) so that \(h(x) = -x^3 + x < x \) for \(x > 0 \) and \(h(x) = -x^3 + x > x \) for \(x < 0 \). Thus \(x \) is rising if \(x \) is below 0 and falling if it is above 0. The convergence is then monotonic.

However note that at \(\bar{x} = 0 \) we have that \(h'(0) = 1 \) so that \(A = 1 \) and the eigenvalue is \(\lambda = 1 \), thus \(|\lambda| = 1 \).

One may oppose this example since we were requiring \(I - A \) to be non-singular, here \(I - A = 0 \) so it is singular. The next example shows a case with \(I - A \) non-singular.

Example 2. Take

\[h(x) = x^3 - x \]

it is easy to see that \(\bar{x} = 0 \) is the unique steady state of \(x_{t+1} = h(x_t) \) for \(x \in [-1, 1] \). It is easy to see that the system is locally stable around \(\bar{x} \) (it is not monotonic though).

However note that at \(\bar{x} = 0 \) we have that \(h'(0) = -1 \) so that \(A = -1 \) and the eigenvalue is \(\lambda = -1 \), thus \(|\lambda| = 1 \). Note that in this case \(I - A = -2 \) is singular.

Note: Clearly an eigenvalue with absolute value of 1 does not ensure local convergence, just take \(h(x) = x^3 + x \) or \(h(x) = -x^3 - x \) for example.

Remarks: Of course both of these policy functions can be generated as optimal policy functions for some concave \(F \) and some \(0 < \beta < 1 \) using the Boldrin-Montrucchio construction argument we went over in class. Thus these point are of interest for us, they can arise in applications.

We conclude from these 2 examples that a one dimensional system may be stable even if we don’t have \(|\lambda| < 1 \), if we do have \(|\lambda| = 1 \). More generally, with more dimensions this point may affect the dimensionality of the subset of the neighbourhood over which the system is stable. That is, even if we have \(|\lambda_i| < 1 \) for only \(m \) eigenvalues, if we have some other eigenvalues with \(|\lambda_i| = 1 \) we may [we can’t be sure, see the ”note” above] have convergence starting from \(x_0 \) belonging to a subset of greater dimension than \(m \).