Recursive Methods
Outline Today’s Lecture

- continue APS: worst and best value
- Application: Insurance with Limited Commitment
- stochastic dynamics
B(W) operator

Definition: For each set $W \subset R$, let $B(W)$ be the set of possible values $\omega = (1 - \delta)r(x, y) + \delta \omega_1$ associated with some admissible tuples $(x, y, \omega_1, \omega_2)$ wrt W:

$$B(W) \equiv \left\{ w : \exists (x, y) \in C \text{ and } \omega_1, \omega_2 \in W \text{ s.t.} \right.$$

$$(1 - \delta)r(x, y) + \delta \omega_1 \geq (1 - \delta)r(x, \hat{y}) + \delta \omega_2, \forall \hat{y} \in Y \left. \right\}$$

- note that V is a fixed point $B (V) = V$
- actually, V is the biggest fixed point

[fixed point not necessarily unique!]

Recursive Methods Nr. 3
Finding V

In this simple case here we can do more...

- lowest v is self-enforcing
 - highest v is self-rewarding

$$v_{low} = \min_{(x,y)\in C} \{ (1 - \delta) r(x, y) + \delta v \}$$

$$(1 - \delta) r(x, y) + \delta v \geq (1 - \delta) r(x, \hat{y}) + \delta v_{low} \text{ all } \hat{y} \in Y$$

then

$$\Rightarrow v_{low} = (1 - \delta) r(h(y), y) + \delta v \geq (1 - \delta) r(h(y), H(h(y))) + \delta v_{low}$$

- if binds and $v > v_{low}$ then minimize RHS of inequality

$$v_{low} = \min_y r(h(y), H(h(y)))$$
Best Value

- for Best, use Worst to punish and Best as reward

solve:

\[
\max_{(x, y) \in C, v \in V} \left\{ (1 - \delta) r(x, y) + \delta v_{\text{high}} \right\}
\]

\[
(1 - \delta)r(x, y) + \delta v_{\text{high}} \geq (1 - \delta)r(x, \hat{y}) + \delta v_{\text{low}} \quad \text{all } \hat{y} \in Y
\]

then clearly \(v_{\text{high}} = r(x, y) \)

- so

\[
\max r(h(y), y)
\]

subject to \(r(h(y), y) \geq (1 - \delta)r(h(y), H(h(y))) + \delta v_{\text{low}} \)

- if constraint not binding \(\rightarrow \) Ramsey (first best)

- otherwise value is constrained by \(v_{\text{low}} \)
Insurance with Limited Commitment

• 2 agents utility $u(c^A)$ and $u(c^B)$

• y_t^A is iid over $[y_{low}, y_{high}]$

• $y_t^B = \bar{y} - y_t^A$ same distribution as y_t^A (symmetry)

• define

$$w_{aut} = \frac{E u(y)}{1 - \beta}$$

• let $[w_l(y), w_h(y)]$ be the set of attainable levels of utility for A when A has income y (by symmetry it is also that of A with income $\bar{y} - y$)

• $v(w, y)$ for $w \in [w_l, w_h]$ be the highest utility for B given that A is promised w and has income y (the pareto frontier)
Recursive Representation

\[v(w, y) = \max\{u(c^B) + \beta Ev(w'(y'), y')\} \]

\[w = u(c^A) + \beta Ew(y') \]

\[u(c^A) + \beta Ew(y') \geq u(y) + \beta v_{aut} \]

\[u(c^B) + \beta Ev(w'(y'), y') \geq u(\bar{y} - y) + \beta v_{aut} \]

\[c^A + c^B \leq \bar{y} \]

\[w'(y') \in [w_l(y'), w_h(y')] \]

- is this a contraction? NO
- is it monotonic? YES
- should solve for \([w_l(y), w_h(y)]\) jointly
 - clearly \(w_l(y) = u(y) + \beta v_{aut}\)
 - \(w_h(y)\) such that \(v(w_h(y), y) = u(\bar{y} - y) + \beta v_{aut}\)
Stochastic Dynamics

- output of stochastic dynamic programming:

 optimal policy:

 \[x_{t+1} = g(x_t, z_t) \]

- convergence to steady state?
 on rare occasions (but not necessarily never...)

- convergence to something?
Notion of Convergence

Idea:

- start at $t = 0$ with some x_0 and s_0
- compute $x_1 = g(x_0, z_0) \rightarrow x_1$ is not uncertain from $t = 0$ view
- z_1 is realized \rightarrow compute $x_2 = g(x_1, z_1)$
 x_2 is random from point of view of $t = 0$
- continue... $x_3, x_4, x_5,...x_t$ are random variables from $t = 0$ perspective
- $F_t(x_t)$ distribution of x_t (given x_0, z_0)
 more generally think of joint distribution of (x, z)
- convergence concept
 $$\lim_{t \to \infty} F_t(x) = F(x)$$
Examples

- stochastic growth model
- Brock-Mirman ($\delta = 0$)

\[u(c) = \log c \]
\[f(A, k) = Ak^\alpha \]

and A_t is i.i.d. optimal policy

\[k_{t+1} = sA_t k_t^\alpha \]

with $s = \beta \alpha$
Examples

- search model: last recitation
 employment state u and e (also wage if we want)
 \rightarrow invariant distribution gives steady state unemployment rate

- if uncertainty is idiosyncratic in a large population
 $\Rightarrow F$ can be interpreted as a cross section
income fluctuations problem

\[v(a, y; R) = \max_{0 \leq a' \leq Ra + y} \{ u(Ra + y - a') + \beta E [v(a', y'; R) | y] \} \]

solution \(a' = g(a, y; R) \)

invariant distribution \(F(a; R) \)

cross section assets in large population

how does \(F \) vary with \(R \)? (continuously?)

once we have \(F \) can compute moments:

market clearing

\[\int a \, dF(a; R) = K \]
Markov Chains

• N states of the world
• let Π_{ij} be probability of $s_{t+1} = j$ conditional on $s_t = i$
• $\Pi = (\Pi_{ij})$ transition matrix
• p distribution over states
• $p_0 \rightarrow p_1 = \Pi p_0$ (why?) $\rightarrow \ldots \rightarrow$

$$p_t = \Pi^t p_0$$

• does Π^t converge?
Examples

- example 1: Π^t converges
- example 2: transient state
- example 3: Π^t does not converge but fluctuates
- example C: ergodic sets
Theorem

Let \(S = \{s_1, \ldots, s_l\} \) and \(\Pi \)

a. \(S \) can be partitioned into \(M \) ergodic sets
b. the sequence

\[
\left(\frac{1}{n} \right) \sum_{k=0}^{n-1} \Pi^k \to Q
\]

c. each row of \(Q \) is an invariant distribution and so are the convex combinations
Theorem
Let $S = \{s_1, \ldots, s_l\}$ and Π then Π has a unique ergodic set if and only if there is a state s_j such that for all i there exists an $n \geq 1$ such that $\pi_{ij}^{(n)} > 0$. In this case Π has a unique invariant distribution p^*; each row of Q equals p^*.

Theorem
Let $\varepsilon_{ij}^n = \min_i \pi_{ij}^n$ and $\varepsilon^n = \sum_j \varepsilon_{ij}^n$. Then S has a unique ergodic set with no cyclical moving subsets if and only if for some $N \geq 1 \varepsilon^N > 0$. In this case $\Pi^n \to Q$.

Recursive Methods Nr. 16