6.207/14.15: Networks
Lecture 4: Erdös-Renyi Graphs and Phase Transitions

Daron Acemoglu and Asu Ozdaglar
MIT

September 21, 2009
Outline

- Phase transitions
- Connectivity threshold
- Emergence and size of a giant component
- An application: contagion and diffusion

Reading:

- Jackson, Sections 4.2.2-4.2.5, and 4.3.
Phase Transitions for Erdös-Renyi Model

- Erdös-Renyi model is completely specified by the link formation probability $p(n)$.
- For a given property A (e.g. connectivity), we define a threshold function $t(n)$ as a function that satisfies:

 \[P(\text{property } A) \to 0 \quad \text{if} \quad \frac{p(n)}{t(n)} \to 0, \text{ and} \]

 \[P(\text{property } A) \to 1 \quad \text{if} \quad \frac{p(n)}{t(n)} \to \infty. \]

- This definition makes sense for “monotone or increasing properties,” i.e., properties such that if a given network satisfies it, any supernetwork (in the sense of set inclusion) satisfies it.
- When such a threshold function exists, we say that a phase transition occurs at that threshold.
- Exhibiting such phase transitions was one of the main contributions of the seminal work of Erdös and Renyi 1959.
Threshold Function for Connectivity

Theorem

(Erdös and Renyi 1961) A threshold function for the connectivity of the Erdös and Renyi model is \(t(n) = \frac{\log(n)}{n} \).

- To prove this, it is sufficient to show that when \(p(n) = \lambda(n) \frac{\log(n)}{n} \) with \(\lambda(n) \to 0 \), we have \(\mathbb{P}(ext{connectivity}) \to 0 \) (and the converse).
- However, we will show a stronger result: Let \(p(n) = \lambda \frac{\log(n)}{n} \).

 If \(\lambda < 1 \), \(\mathbb{P}(ext{connectivity}) \to 0 \), \(\quad (1) \)

 If \(\lambda > 1 \), \(\mathbb{P}(ext{connectivity}) \to 1 \). \(\quad (2) \)

Proof:

- We first prove claim (1). To show disconnectedness, it is sufficient to show that the probability that there exists at least one isolated node goes to 1.
Proof (Continued)

- Let I_i be a Bernoulli random variable defined as
 \[I_i = \begin{cases}
 1 & \text{if node } i \text{ is isolated,} \\
 0 & \text{otherwise.}
 \end{cases} \]

- We can write the probability that an individual node is isolated as
 \[q = P(I_i = 1) = (1 - p)^{n-1} \approx e^{-pn} = e^{-\lambda \log(n)} = n^{-\lambda}, \quad (3) \]
 where we use \(\lim_{n \to \infty} \left(1 - \frac{a}{n}\right)^n = e^{-a} \) to get the approximation.

- Let $X = \sum_{i=1}^{n} I_i$ denote the total number of isolated nodes. Then, we have
 \[E[X] = n \cdot n^{-\lambda}. \quad (4) \]

- For \(\lambda < 1 \), we have \(E[X] \to \infty \). We want to show that this implies \(P(X = 0) \to 0 \).
 - In general, this is not true.
 - Can we use a Poisson approximation (as in the example from last lecture)? No, since the random variables I_i here are dependent.
 - We show that the variance of X is of the same order as its mean.
Proof (Continued)

- We compute the variance of X, $\text{var}(X)$:

$$\text{var}(X) = \sum_i \text{var}(l_i) + \sum_i \sum_{j \neq i} \text{cov}(l_i, l_j)$$

$$= n\text{var}(l_1) + n(n-1)\text{cov}(l_1, l_2)$$

$$= nq(1-q) + n(n-1)\left(\mathbb{E}[l_1l_2] - \mathbb{E}[l_1]\mathbb{E}[l_2]\right),$$

where the second and third equalities follow since the l_i are identically distributed Bernoulli random variables with parameter q (dependent).

- We have

$$\mathbb{E}[l_1l_2] = \mathbb{P}(l_1 = 1, l_2 = 1) = \mathbb{P}(\text{both 1 and 2 are isolated})$$

$$= (1-p)^{2n-3} = \frac{q^2}{(1-p)}.$$
Proof (Continued)

- For large \(n \), we have \(q \to 0 \) [cf. Eq. (3)], or \(1 - q \to 1 \). Also \(p \to 0 \). Hence,

\[
\operatorname{var}(X) \sim nq + n^2q^2 \frac{p}{1-p} \sim nq + n^2q^2p
\]

\[
= nn^{-\lambda} + \lambda n \log(n)n^{-2\lambda}
\]

\[
\sim nn^{-\lambda} = \mathbb{E}[X],
\]

where \(a(n) \sim b(n) \) denotes \(\frac{a(n)}{b(n)} \to 1 \) as \(n \to \infty \).

- This implies that

\[
\mathbb{E}[X] \sim \operatorname{var}(X) \geq (0 - \mathbb{E}[X])^2 \mathbb{P}(X = 0),
\]

and therefore,

\[
\mathbb{P}(X = 0) \leq \frac{\mathbb{E}[X]}{\mathbb{E}[X]^2} = \frac{1}{\mathbb{E}[X]} \to 0.
\]

- It follows that \(\mathbb{P}(\text{at least one isolated node}) \to 1 \) and therefore, \(\mathbb{P}(\text{disconnected}) \to 1 \) as \(n \to \infty \), completing the proof.
Converse

- We next show claim (2), i.e., if \(p(n) = \frac{\lambda \log(n)}{n} \) with \(\lambda > 1 \), then \(\mathbb{P}(\text{connectivity}) \to 1 \), or equivalently \(\mathbb{P}(\text{disconnectivity}) \to 0 \).

- From Eq. (4), we have \(\mathbb{E}[X] = n \cdot n^{-\lambda} \to 0 \) for \(\lambda > 1 \).

- This implies probability of having isolated nodes goes to 0. However, we need more to establish connectivity.

- The event “graph is disconnected” is equivalent to the existence of \(k \) nodes without an edge to the remaining nodes, for some \(k \leq n/2 \).

- We have

 \[\mathbb{P}(\{1, \ldots, k\} \text{ not connected to the rest}) = (1 - p)^{k(n-k)}, \]

 and therefore,

 \[\mathbb{P}(\exists k \text{ nodes not connected to the rest}) = \binom{n}{k} (1 - p)^{k(n-k)}. \]
Converse (Continued)

- Using the union bound [i.e. \(\mathbb{P}(\bigcup_i A_i) \leq \sum_i \mathbb{P}(A_i) \)], we obtain

\[
\mathbb{P}\text{(disconnected graph)} \leq \sum_{k=1}^{n/2} \binom{n}{k} (1 - p)^k (n-k).
\]

- Using Stirling’s formula \(k! \sim \left(\frac{k}{e}\right)^k \), which implies \(\binom{n}{k} \leq \frac{n^k}{(k/e)^k} \) in the preceding relation and some (ugly) algebra, we obtain

\[
\mathbb{P}\text{(disconnected graph)} \to 0,
\]

completing the proof.
Phase Transitions — Connectivity Threshold

Figure: Emergence of connectedness: a random network on 50 nodes with $p = 0.10$.
Giant Component

- We have shown that when $p(n) << \frac{\log(n)}{n}$, the Erdös-Renyi graph is disconnected with high probability.
- In cases for which the network is not connected, the component structure is of interest.
- We have argued that in this regime the expected number of isolated nodes goes to infinity. This suggests that the Erdös-Renyi graph should have an arbitrarily large number of components.
- We will next argue that the threshold $p(n) = \frac{\lambda}{n}$ plays an important role in the component structure of the graph.
 - For $\lambda < 1$, all components of the graph are “small”.
 - For $\lambda > 1$, the graph has a unique giant component, i.e., a component that contains a constant fraction of the nodes.
Emergence of the Giant Component—1

- We will analyze the component structure in the vicinity of \(p(n) = \frac{\lambda}{n} \) using a branching process approximation.
- We assume \(p(n) = \frac{\lambda}{n} \).
- Let \(B(n, \frac{\lambda}{n}) \) denote a binomial random variable with \(n \) trials and success probability \(\frac{\lambda}{n} \).
- Consider starting from an arbitrary node (node 1 without loss of generality), and exploring the graph.

(a) Erdos-Renyi graph process.
(b) Branching Process Approx.
Emergence of the Giant Component—2

- We first consider the case when $\lambda < 1$.
- Let Z^G_k and Z^B_k denote the number of individuals at stage k for the graph process and the branching process approximation, respectively.
- In view of the “overcounting” feature of the branching process, we have $Z^G_k \leq Z^B_k$ for all k.
- From branching process analysis (see Lecture 3 notes), we have $\mathbb{E}[Z^B_k] = \lambda^k$, (since the expected number of children is given by $n \times \frac{\lambda}{n} = \lambda$).
- Let S_1 denote the number of nodes in the Erdős-Renyi graph connected to node 1, i.e., the size of the component which contains node 1.
- Then, we have
 \[
 \mathbb{E}[S_1] = \sum_k \mathbb{E}[Z^G_k] \leq \sum_k \mathbb{E}[Z^B_k] = \sum_k \lambda^k = \frac{1}{1 - \lambda}.
 \]
Emergence of the Giant Component—3

- The preceding result suggests that for $\lambda < 1$, the sizes of the components are “small”.

Theorem

Let $p(n) = \frac{\lambda}{n}$ and assume that $\lambda < 1$. For all (sufficiently large) $a > 0$, we have

$$\Pr\left(\max_{1 \leq i \leq n} |S_i| \geq a \log(n) \right) \to 0 \quad \text{as } n \to \infty.$$

Here $|S_i|$ is the size of the component that contains node i.

- This result states that for $\lambda < 1$, all components are small [in particular they are of size $O(\log(n))$].
- Proof is beyond the scope of this course.
Emergence of the Giant Component—4

- We next consider the case when $\lambda > 1$.
- We claim that $Z^G_k \approx Z^B_k$ when $\lambda^k \leq O(\sqrt{n})$.
- The expected number of conflicts at stage $k + 1$ satisfies
 \[\mathbb{E}[\text{number of conflicts at stage } k + 1] \leq np^2 \mathbb{E}[Z^2_k] = n \frac{\lambda^2}{n^2} \mathbb{E}[Z^2_k]. \]

We assume for large n that Z_k is a Poisson random variable and therefore \(\text{var}(Z_k) = \lambda^k \). This implies that
\[\mathbb{E}[Z^2_k] = \text{var}(Z_k) + \mathbb{E}[Z_k]^2 = \lambda^k + \lambda^{2k} \approx \lambda^{2k}. \]

Combining the preceding two relations, we see that the conflicts become non-negligible only after $\lambda^k \approx \sqrt{n}$.
Emergence of the Giant Component—5

- Hence, there exists some $c > 0$ such that
 \[\mathbb{P}(\text{there exists a component with size } \geq c \sqrt{n} \text{ nodes}) \to 1 \text{ as } n \to \infty. \]

- Moreover, between any two components of size \sqrt{n}, the probability of having a link is given by
 \[\mathbb{P}(\text{there exists at least one link}) = 1 - \left(1 - \frac{\lambda}{n}\right)^n \approx 1 - e^{-\lambda}, \]
 i.e., it is a positive constant independent of n.

- This argument can be used to see that components of size $\leq \sqrt{n}$ connect to each other, forming a connected component of size qn for some $q > 0$, a giant component.
Size of the Giant Component

- Form an Erdös-Rényi graph with $n - 1$ nodes with link formation probability $p(n) = \frac{\lambda}{n}$, $\lambda > 1$.
- Now add a last node, and connect this node to the rest of the graph with probability $p(n)$.
- Let q be the fraction of nodes in the giant component of the $n - 1$ node network. We can assume that for large n, q is also the fraction of nodes in the giant component of the n-node network.
- The probability that node n is not in the giant component is given by
 \[\mathbb{P}(\text{node } n \text{ not in the giant component}) = 1 - q \equiv \rho. \]
- The probability that node n is not in the giant component is equal to the probability that none of its neighbors is in the giant component, yielding
 \[\rho = \sum_d P_d \rho^d \equiv \Phi(\rho). \]
- Similar to the analysis of branching processes, we can show that this equation has a fixed point $\rho^* \in (0, 1)$.

An Application: Contagion and Diffusion

- Consider a society of n individuals.
- A randomly chosen individual is infected with a contagious virus.
- Assume that the network of interactions in the society is described by an Erdös-Renyi graph with link probability p.
- Assume that any individual is immune with a probability π.
- We would like to find the expected size of the epidemic as a fraction of the whole society.

The spread of disease can be modeled as:

- Generate an Erdös-Renyi graph with n nodes and link probability p.
- Delete πn of the nodes uniformly at random.
- Identify the component that the initially infected individual lies in.

We can equivalently examine a graph with $(1 - \pi)n$ nodes with link probability p.
An Application: Contagion and Diffusion

- We consider 3 cases:
 - $p(1 - \pi)n < 1$:
 \[
 \mathbb{E}[\text{size of epidemic as a fraction of the society}] \leq \frac{\log(n)}{n} \approx 0.
 \]
 - $1 < p(1 - \pi)n < \log((1 - \pi)n)$:
 \[
 \mathbb{E}[\text{size of epidemic as a fraction of the society}] = \frac{qq(1 - \pi)n + (1 - q)\log((1 - \pi)n)}{n} \approx q^2(1 - \pi),
 \]
 where q denotes the fraction of nodes in the giant component of the graph with $(1 - \pi)n$ nodes, i.e., $q = 1 - e^{-q(1-\pi)np}$.
 - $p > \frac{\log((1-\pi)n)}{(1-\pi)n}$:
 \[
 \mathbb{E}[\text{size of epidemic as a fraction of the society}] = (1 - \pi).
 \]