PSet 5 Hints for Stata users

Raymond P. Guiteras

MIT 14.382 Spring 2006

I have tested these tips in Stata 7.0, 8.0 and 8.2. I am not sure if they will work in Stata 9.0
(the version available to everyone at MIT), but you can always “dumb down” your code to a
previous version by entering version 8.0 as the first line of your do-file.

1. Loops

-`forvalues`- allows you to loop through iterations of a command.
Sample code:
```
forvalues i = 1/10 {
    display "The value of the macro i is ‘i’"
}
```

-`forvalues`- loops can be nested as follows:
```
forvalues i = 1/5 {
    forvalues j = 1/5 {
        display "The value of the macro i is ‘i’"
        display "The value of the macro j is ‘j’"
        scalar k = ‘i’+‘j’
        display "The value of the scalar k is " k
    }
}
```

Note that macros must be called using left-single-quote and right-single-quote, but scalars are
just called like a variable.
There are other commands such as -`while`- that will allow you to do much the same thing.

2. Accessing regression output

After running estimation-class commands such as -`reg`- and -`qreg`-, Stata stores lots of
useful results. You can see what is stored and where by typing `ereturn list` after your
-`reg`- command. For example:
```
use "C:\Stata8\auto.dta", clear
reg price mpg
```
return list
You can see that the coefficients are stored in a 2x1 matrix called \(e(b) \) and the variance-covariance matrix is stored in a matrix called \(e(\Sigma) \). There are other useful results too, such as the sample size, R-squared and adjusted R-squared, etc. Note that here \(e(b) \) is a 2x1 matrix because we are estimating two parameters – the coefficient on mpg and the intercept term. For \(-\text{qreg}\)-, things are pretty much the same.

To see what the matrix \(e(b) \) contains, enter `matrix list e(b)`.

3. Creating matrices
To create a 10x2 matrix of missing values, enter `matrix MyTestMat = J(10,2,.).
To see what MyTestMat looks like, enter `matrix list MyTestMat`
To see what matrices are stored in memory, enter `matrix dir`
To create a 2x10 matrix of zeros, enter `matrix MyTestMat = J(2,10,0).
Suppose you’ve just run a regression as in the previous section. To replace the first row of MyTestMat with the coefficient vector \(e(b) \), enter `matrix MyTestMat[1,1]=e(b)` (It may look a little strange to refer to the (1,1) cell of MyTestMat when you want to replace the entire first row, but this is the right command.)

Suppose you’re running a forvalues loop to replicate a regression a number of times and using \(i \) as your counter macro. To replace the ith row of MyTestMat with the coefficient vector \(e(b) \) estimated in the ith replication, enter `matrix MyTestMat[\{i\},1]=e(b)` . Note the use of left- and right-single-quotes to call the macro \(i \).

4. How to create a fake data set with 20 observations
`clear`
`set more off`
`scalar T=20`
`matrix FakeData = J(T,1,.)`
`svmat FakeData, names(placeholder)`
`rename placeholder1 placeholder`
`replace placeholder=-n`
`gen x1=uniform() /*so x1~U[0,1]*/`
`replace x1=(4*x1)+1 /*now x1~U[1,5]*/`
`gen e=invnorm(uniform()) /*e~N(0,1) uncorrelated*/`
`scalar beta = 1`
`gen y=(beta*x1) + e`
`save FakeData.dta, replace`

5. Generating random numbers with a specified distribution.
First strategy: transform from a uniform distribution. See Casella and Berger 5.6 and Theorem 2.1.10.
scalar u=uniform() draws a scalar from a U[0,1]
generate u=uniform() creates a variable (as many observations as are in your dataset) with each observation drawn from U[0,1] distribution, and independent.
gen e1=invnorm(uniform()) creates a variable with each observation drawn from N[0,1] distribution, and independent.
e2=invttail(5,uniform()) creates a variable with each observation drawn from t(5) distribution, and independent.
e3=invttail(1,uniform()) creates a variable with each observation drawn from t(1) distribution, and independent. Why is this relevant?
e4=invchi2(2,uniform()) creates a variable with each observation drawn from chi-squared(2) distribution, and independent.

Second strategy: find a command that gives you the distribution you want.