1. Let X_1, \ldots, X_n be iid Poisson (λ) and let λ have a Gamma (α, β) distribution (the conjugate family for Poisson)

$$\pi(\lambda) = \lambda^{\alpha-1} \exp\{-\lambda/\beta\} / \Gamma(\alpha) \beta^\alpha$$

(a) Find the posterior distribution for λ.

(b) Calculate posterior mean and variance. *Hint: mean of Gamma (α, β) is $\alpha \beta$; the variance is $\alpha \beta^2$.*

(c) Discuss whether the prior vanishes asymptotically.

(d) Assume that α is an integer. Show that the posterior for $2(n\beta+1)\lambda$ given X is $\chi^2(2(\alpha + \Sigma X_i))$.

(e) Using result of (d), suggest a 95%-credible interval for λ.

2. Suppose that conditional on τ a random variable X has normal distribution with mean zero and variance $\frac{1}{\tau}$. The prior for τ is Gamma (α, β).

(a) Find the posterior for τ.

(b) Compare the prior mean for τ and the posterior mean.

3. Let X be a random variable with exponential distribution

$$f(x \mid \beta) = \frac{1}{\beta} e^{-x/\beta} ; x > 0, \beta > 0.$$

One wants to test $H_0 : \beta = \beta_0$ against $H_a : \beta \neq \beta_0$.

(a) Suggest a 5% level test.

(b) Draw the power function.

(c) Provide the formula for the p-value.
14.381 Statistical Method in Economics
Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.