More Non-Stationarity

We have seen that there’s a discrete difference between stationarity and non-stationarity. When we have a non-stationary process, limiting distributions are quite different from in the stationary case. For example, let \(\epsilon_t \) be a martingale difference sequence, with \(E(\epsilon_t^2 | I_{t-1}) = 1 \), \(E\epsilon_t^4 < k < \infty \). Then \(\xi_T(\tau) = \frac{1}{\sqrt{T}} \sum_{i=1}^{T} \epsilon_t \Rightarrow W(\cdot) \). Then there is a sort of discontinuity in the limiting distribution of an AR(1) at \(\rho = 1 \):

<table>
<thead>
<tr>
<th>Process</th>
<th>Unit Root</th>
<th>Stationary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limiting distribution of (\rho)</td>
<td>(y_t = y_{t-1} + \epsilon_t) (T(\hat{\rho} - 1) \Rightarrow \int \frac{dW}{\sqrt{W^2 dt}}) (\sqrt{T}(\hat{\rho} - \rho) \Rightarrow N(0,1 - \rho^2))</td>
<td></td>
</tr>
<tr>
<td>Limiting distribution of (t)</td>
<td>(t \Rightarrow \int \frac{dW}{\sqrt{W^2 dt}}) (t \Rightarrow N(0,1))</td>
<td></td>
</tr>
</tbody>
</table>

In finite samples, the distribution of the \(t \)-stat is continuous in \(\rho \in [0,1] \). However, the limit distribution is discontinuous at \(\rho = 1 \). This must mean that the convergence is not uniform. In particular, the convergence of the \(t \)-stat to a normal distribution is slower, the closer \(\rho \) is to 1. Thus, in small samples, when \(\rho \) is close to 1, the normal distribution badly approximates the unknown finite sample distribution of the \(t \)-statistic.

A more precise statement is that we have pointwise convergence, \(i.e. \)

\[
\sup_x |P(t(\rho, T) \leq x) - \Phi(x)| \rightarrow 0 \forall \rho < 1
\]

but not uniform convergence, \(i.e. \)

\[
\sup_{\rho \in (0,1)} \sup_x |P(t(\rho, T) \leq x) - \Phi(x)| \not\rightarrow 0
\]

where \(\Phi(\cdot) \) is the normal cdf. It means that the confidence set based on normal approximation of \(t \)-statistic will have bad coverage for values of \(\rho \) very close to the unit root. Since we don’t know the true value of \(\rho \) for sure we are in danger to get a deceptive confidence set.

Just how bad is the normal approximation? If you construct a 95% confidence interval based on a normal approximation, then without a constant the coverage is 90%, with a constant 70%, and with a linear trend 35%.

Local to Unity Asymptotics

Local to unity asymptotics is one way to try to construct a better approximation. Let:

\[
x_t = \rho x_{t-1} + \epsilon_t \quad , \quad t = 1, \ldots, T
\]

\[
\rho = \exp(c/T) \approx 1 + c/T \quad , \quad c < 0
\]

This model is not meant to be a literal way of describing the world. It is just a device for building a better approximating limiting distribution. It can be shown that:

\[
\frac{x_{[T\tau]}}{\sqrt{T}} \Rightarrow \mathcal{Z}_c(\tau) \quad (1)
\]

where \(\mathcal{Z}_c(\tau) \) is an Ornstein-Ulenbeck process.
Definition 1. Ornstein-Ulenbeck process: $\mathcal{X}_c(\tau) = \int_0^\tau e^{c(\tau-s)}dW(s)$, so $\mathcal{X}_c(\tau) \sim N(0, \frac{e^{2c\tau}-1}{2c})$

We will not prove (1), but we will sketch the idea. First, observe that

$$\frac{x_t}{\sqrt{T}} = \sum_{j=1}^t \rho^{t-j} \frac{\epsilon_j}{\sqrt{T}}$$

Defining $\xi_T(\tau)$ as usual we have:

$$\frac{x_t}{\sqrt{T}} = \sum_{j=1}^t e^{c(t/T-j/T)} \frac{\epsilon_j}{\sqrt{T}}$$

then taking $\tau = t/T$ we have:

$$\frac{x_{[t/T]}}{\sqrt{T}} = \int_0^T e^{c(\tau-s)}d\xi_T(s)$$

Finally, assuming convergence of the stochastic integral (which we could prove if we took care of some technical details), gives:

$$\frac{x_{[t/T]}}{\sqrt{T}} \Rightarrow \int_0^T e^{c(\tau-s)}d\xi_T(s) \equiv \mathcal{X}_c(\tau)$$

Using this result, the limiting distribution of OLS will be (omitting several technical steps):

$$T(\hat{\rho} - \rho) \Rightarrow \frac{\int \mathcal{X}_c(s)dW(s)}{\int \mathcal{X}_c^2(s)ds}$$

$$t_{\rho = e^{c/T}} \Rightarrow t^c = \frac{\int \mathcal{X}_c(s)dW(s)}{\sqrt{\int \mathcal{X}_c^2(s)ds}}$$

If $c = 0$, t^c is a Dickey-Fuller distribution. If $c \to -\infty$, the $t^c \Rightarrow N(0,1)$. This was shown by Phillips (1987).

The convergence to this distribution is uniform (Mikusheva (2007)),

$$\sup_{\rho \in [0,1]} \sup_x \left| P(t(\rho, T) \leq x) - P(t^c \leq x | \rho = e^{c/T}) \right| \to 0 \text{ as } T \to \infty$$

Figure 1 illustrates this convergence.

Confidence Sets

We usually construct confidence sets by inverting a test. Consider testing $H_0 : \rho = \rho_0$ vs $\rho \neq \rho_0$. We construct a confidence set as $C(x) = \{\rho_0 : \text{hypothesis accepted}\}$. So, for example in OLS, we take $t = \frac{\hat{\rho} - \rho}{s.e(\hat{\rho})}$ and

$$C(x) = \{\rho_0 : -1.96 \leq \frac{\hat{\rho} - \rho}{s.e(\hat{\rho})} \leq 1.96\}$$

$$= [\hat{\rho} - 1.96s.e(\hat{\rho}), \hat{\rho} + 1.96s.e(\hat{\rho})]$$

To construct confidence sets using local to unity asymptotics, we do the exact same thing, except the quantiles of our limiting distribution depend on ρ_0, i.e.

$$C(x) = \{\rho_0 : q_1(\rho_0, T) \leq \frac{\hat{\rho} - \rho}{s.e(\hat{\rho})} \leq q_1(\rho_0, T)\}$$

Cite as: Anna Mikusheva, course materials for 14.384 Time Series Analysis, Fall 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
where \(q_1(\rho_0, T) \) and \(q_2(\rho_0, T) \) are quantiles of \(t^c \) for \(c = T \log \rho_0 \).

This approach was developed by Stock (1991). It only works when we have an AR(1) with no autocorrelation. Some correction could be done in AR(\(p \)) to construct a confidence set for the largest autoregressive root.

Grid Bootstrap

This was an approach developed by Hansen (1999). It has a local to unity interpretation. Suppose

\[
x_t = \rho x_{t-1} + \sum_{j=1}^{p-1} \beta_j \Delta x_{t-j} + \epsilon_t
\]

where \(\rho \) will be the sum of AR coefficients; it is a measure of persistence. For the grid bootstrap we:

- Choose grid on \([0, 1]\)
- Test \(H_0 : \rho = \rho_0 \) vs \(\rho \neq \rho_0 \) for each point on grid
 1. Regress \(x_t \) on \(x_{t-1} \) and \(\Delta x_{t-1}, \ldots, \Delta x_{t-p+1} \) to get \(\hat{\rho} \), \(t_{\rho_0}-\text{stat} \)
 2. Regress \(x_t - \rho_0 x_{t-1} \) on \(\Delta x_{t-1}, \ldots, \Delta x_{t-p+1} \) to get \(\hat{\beta}_j \)
 3. Bootstrap:
 - \(\epsilon^*_t \) from residuals of step 1
 - Form \(x^*_t = \rho_0 x^*_{t-1} + \sum \hat{\beta}_j \Delta x_{t-j} + \epsilon^*_t \) do OLS as in step 1
 - Repeat, use quantiles of bootstrapped \(t \)-stats as critical values to form test
- All \(\rho_0 \) for which the hypothesis is accepted form a confidence set

Bayesian Perspective

From a Bayesian point of view, there is nothing special about unit roots if one assumes a flat prior. Sims and Uhlig (1991) argue that all the attention paid to unit roots is non-productive. Phillips (1991) has a
reply that looks more carefully at the idea of uninformative priors. Sims and Uhlig (1991) had put a uniform prior on $[0, 1]$. Phillips points out that this puts all weight on the stationary case. He argues that a uniform prior is not necessarily uninformative, and point out that a Jeffreys prior would put much more weight (asymptotically almost unity weight) on the non-stationary case. In this case Bayesian conclusions look more like frequentists’. There is a Journal of Applied Econometrics issue about this debate.