Spectrum Estimation

We have a stationary series, \(\{z_t\} \) with covariances \(\gamma_j \) and spectrum \(S(\omega) = \sum_{j=-\infty}^{\infty} \gamma_j e^{-i\omega j} \). We want to estimate \(S(\omega) \).

Using Covariances

As in lecture 5, we can estimate the spectrum in the same way that we estimate the long-run variance.

Naïve approach

We cannot estimate all the covariances from a finite sample. Let’s just estimate all the covariances that we can

\[
\hat{\gamma}_j = \frac{1}{T} \sum_{j=k+1}^{T} z_j z_{j-k}
\]

and use them to form

\[
\hat{S}(\omega) = \sum_{j=-(T-1)}^{T-1} \hat{\gamma}_j e^{-i\omega j}
\]

This estimator is not consistent. It converges to a distribution instead of a point. To see this, let \(y_\omega = \frac{1}{\sqrt{T}} \sum_{t=1}^{T} e^{-i\omega t} z_t \), so that

\[
\hat{S}(\omega) = y_\omega \bar{y}_\omega
\]

If \(\omega \neq 0 \)

\[
2\hat{S}(\omega) \Rightarrow S(\omega) \chi^2(2)
\]

Kernel Estimator

\[
\hat{S}(\omega) = \sum_{j=-S_T}^{S_T} \left(1 - \left|\frac{j}{S_T}\right|^2\right) \hat{\gamma}_j e^{-i\omega j}
\]

Under appropriate conditions on \(S_T \) (\(S_T \to \infty \), but more slowly than \(T \)), this estimator is consistent\(^1\). This can be shown in a way similar to the way we showed the Newey-West estimator is consistent.

\(^1\)In a uniform sense, i.e. \(P\left(\sup_{\omega \in [-\pi, \pi]} |\hat{S}(\omega) - S(\omega)| > \epsilon\right) \to 0 \)
Proof. This is an informal “proof” that sketches the ideas, but isn’t completely rigorous. It is nearly identical to the proof of HAC consistency in lecture 3.

\[
|\hat{S}(\omega) - S(\omega)| = \left| - \sum_{|j| > S_T} \gamma_j e^{-i\omega j} + \sum_{j = -S_T}^{S_T} (k_T(j) - 1)\gamma_j e^{-i\omega j} + \sum_{j = -S_T}^{S_T} k_T(j)(\hat{\gamma}_j - \gamma_j) e^{-i\omega j} \right|
\]

\[
\leq \left| \sum_{|j| > S_T} \gamma_j \right| + \left| \sum_{j = -S_T}^{S_T} (k_T(j) - 1)\gamma_j \right| + \left| \sum_{j = -S_T}^{S_T} k_T(j)(\hat{\gamma}_j - \gamma_j) \right|
\]

We can interpret these three terms as follows:

1. \(\left| \sum_{|j| > S_T} \gamma_j \right|\) is truncation error
2. \(\left| \sum_{j = -S_T}^{S_T} (k_T(j) - 1)\gamma_j \right|\) is error from using the kernel
3. \(\left| \sum_{j = -S_T}^{S_T} k_T(j)(\hat{\gamma}_j - \gamma_j) \right|\) is error from estimating the covariances

Terms 1 and 2 are non-stochastic. They represent bias. The third term is stochastic; it is responsible for uncertainty. We will face a bias-variance tradeoff.

We want to show that each of these terms goes to zero

1. Disappears as long as \(S_T \to \infty\), since we assumed \(\sum_{-\infty}^{\infty} |\gamma_j| < \infty\).
2. \(\sum_{j = -S_T}^{S_T} (k_T(j) - 1)\gamma_j \leq \sum_{j = -S_T}^{S_T} |k_T(j) - 1||\gamma_j|\) This will converge to zero as long as \(k_T(j) \to 1\) as \(T \to \infty\) and \(|k_T(j)| < 1 \forall j\).
3. Notice that for the first two terms we wanted \(S_T\) big enough to eliminate them. Here, we’ll want \(S_T\) to be small enough.

First, note that \(\hat{\gamma}_j \equiv \frac{1}{T} \sum_{k=1}^{T-j} z_{k+j} z_{k+j}\) is not unbiased. \(E\hat{\gamma}_j = \frac{T-j}{T} \gamma_j = \hat{\gamma}_j\). However, it’s clear that this bias will disappear as \(T \to \infty\).

Let \(\xi_{t,j} = z_t z_{t+j} - \gamma_j\), so \(\hat{\gamma}_j - \gamma_j = \frac{1}{T} \sum_{t=1}^{T-j} \xi_{t,j}\). We need to show that the sum of \(\xi_{t,j}\) goes to zero.

\[
E(\hat{\gamma}_j - \gamma_j)^2 = \frac{1}{T^2} \sum_{k=1}^{T-j} \sum_{t=1}^{T-j} \text{cov}(\xi_{k,j}, \xi_{t,j})
\]

\[
\leq \frac{1}{T^2} \sum_{k=1}^{T-j} \sum_{t=1}^{T-j} |\text{cov}(\xi_{k,j}, \xi_{t,j})|
\]

We need an assumption to guarantee that the covariances of \(\xi\) disappear. The assumption that \(\xi_{t,j}\) are stationary for all \(j\) and \(\sup_j \sum_k |\text{cov}(\xi_{t,j}, \xi_{t+k,j})| < C\) for some constant \(C\) implies that

\[
\frac{1}{T^2} \sum_{k=1}^{T-j} \sum_{t=1}^{T-j} |\text{cov}(\xi_{k,j}, \xi_{t,j})| \leq \frac{C}{T}
\]

By Chebyshev’s inequality we have:

\[
P(\left| \hat{\gamma}_j - \gamma_j \right| > \epsilon) \leq \frac{E(\hat{\gamma}_j - \gamma_j)^2}{\epsilon^2} \leq \frac{C}{\epsilon^2 T}
\]
Then adding these together:

\[
P(S_T | \hat{\gamma}_j - \tilde{\gamma}_j| > \epsilon) \leq \sum_{-S_T}^{S_T} P(|\hat{\gamma}_j - \tilde{\gamma}_j| > \frac{\epsilon}{2S_T + 1})
\]

\[
\leq \sum_{-S_T}^{S_T} \frac{E(\hat{\gamma}_j - \gamma_j)^2}{\epsilon^2} (2S_T + 1)^2
\]

\[
\leq \sum_{-S_T}^{S_T} \frac{C}{T} (2S_T + 1)^2 \approx C_1 \frac{S_T^3}{T}
\]

so, it is enough to assume \(\frac{S_T^3}{T} \to 0 \) as \(T \to \infty \).

Using the Sample Periodogram

The sample periodogram (or sample spectral density) is the square of the finite Fourier transform of the data, *i.e.*

\[
I(\omega) = \frac{1}{T} \left| \sum_{t=1}^{T} z_t e^{-i\omega t} \right|^2
\]

The sample periodogram is the same as the naive estimate of the spectrum that uses all the sample covariances.

\[
I(\omega) = \frac{1}{T} \left(\sum_{t=1}^{T} z_t e^{-i\omega t} \right) \left(\sum_{t=1}^{T} z_t e^{i\omega t} \right)
\]

\[
= \frac{1}{T} \sum_{t=1}^{T} \sum_{s=1}^{T} e^{i\omega(t-s)} z_t z_s
\]

\[
= \sum_{j=-(T-1)}^{T-1} e^{i\omega j} \frac{1}{T} \sum_{t=|j|}^{T} z_t z_{t-|j|}
\]

\[
= \sum_{j=-(T-1)}^{T-1} e^{i\omega j} \hat{\gamma}_j
\]

Smoothed Periodogram

Above, we showed that

\[
2I(\omega) \Rightarrow S(\omega) \chi^2(2)
\]

It’s also true that,

\[
\lim_{T \to \infty} \text{cov}(I(\omega_1), I(\omega_2)) = 0
\]

The sample periodogram is uncorrelated at adjacent frequencies. This suggests that we could estimate the spectrum at \(\omega \) by taking an average over frequencies near \(\omega \). That is,

\[
\hat{S}_{sp}(\omega) = \int_{-\pi}^{\pi} h_T(\omega - \lambda) I(\lambda) d\lambda
\]
where $h_T()$ is a kernel function that peaks at 0. It turns out that this estimator is equivalent to a kernel covariance estimator.

$$\hat{S}_{sp}(\omega) = \int_{-\pi}^{\pi} h_T(\omega - \lambda)I(\lambda)d\lambda$$

$$= \int_{-\pi}^{\pi} \sum_{j=-(T-1)}^{T-1} \hat{\gamma}_j e^{i\lambda j} h_T(\omega - \lambda)d\lambda$$

$$= \sum_{j=-(T-1)}^{T-1} \hat{\gamma}_j \int_{-\pi}^{\pi} e^{i\lambda j} h_T(\omega - \lambda)d\lambda$$

$$= \sum_{j=-(T-1)}^{T-1} \hat{\gamma}_j \int_{-\pi}^{\pi} e^{i(\lambda - \omega)j} h_T(\lambda)d\lambda$$

$$= \sum_{j=-(T-1)}^{T-1} \hat{\gamma}_j e^{-i\omega j} k_T(j)$$

where $k_T(j) = \int_{-\pi}^{\pi} e^{i\lambda j} h_T(\lambda)d\lambda$. $k_T(j)$ is the inverse Fourier transform of $h_T(\lambda)$. Conversely, it must be that $h_T(\lambda)$ is the Fourier transform of $k_T(j)$, i.e.

$$h_T(\lambda) = \frac{1}{2\pi} \sum_{j} k_T(j)e^{-i\lambda j}$$

Conditions on $h_T()$ for consistency can be derived from the conditions on k_T in the lecture on HAC estimation, but it does not look entirely straightforward.

VAR ML

In lecture 7, we said that for a VAR, MLE (with normal distribution) is equivalent to OLS equation by equation. We'll prove that now. The argument can be found in Chapter 11 of Hamilton.

Proof. Let’s say we have a sample of y_t from $t = 0...T$, and we estimate a VAR of order p, $A(L)$. The model is

$$y_t = \sum_{k=1}^{p} A_k y_{t-k} + e_t, e_t \sim N(0, \Omega)$$

The likelihood of $y_p, ..., y_T$ conditional on $y_0, ..., y_{p-1}$ is

$$f(y_p, ..., y_T | y_0, ..., y_{p-1}) = f(y_{p+1}, ..., y_T | y_0, ..., y_{p-1}) f(y_p | y_0, ..., y_{p-1})$$

$$\vdots$$

$$= \pi_{t=p} f(y_t | y_{t-1}, ..., y_{t-p})$$

Each $f(y_t | y_{t-1}, ..., y_{t-p})$ is simply a normal distribution with mean $\sum_{k=1}^{p} A_k y_{t-k}$ and variance Ω, so

$$f(y_p, ..., y_T | y_0, ..., y_{p-1}) = \pi_{t=p}^{T} \left[\Omega^{-1} \right]^{\frac{1}{2}} \exp \left(\frac{1}{2} (y_t A(L))' \Omega^{-1} (y_t A(L)) \right)$$

So the conditional log likelihood is

$$\mathcal{L}(A, \Omega) = -\frac{(T-p)n}{2} \log(2\pi) + \frac{T-p}{2} \log |\Omega^{-1}| - \frac{1}{2} \sum_{t=p}^{T} (y_t A(L))' \Omega^{-1} (y_t A(L))$$
Let $\hat{A}(L)$ be the equation by equation OLS estimate of $A(L)$. We want to show that $\hat{A}(L)$ minimizes $L(A, \Omega)$. To show this we only need to worry about the last term.

$$\sum_{t=p}^{T} (y_t A(L))' \Omega^{-1} (y_t A(L))$$

(1)

Some different notation will help. Let $x_t = [y_{t-1} \ldots y_{t-p}]'$, and let $\Pi = [A_1 A_2 \ldots A_p]$. Similarly define $\hat{\Pi}$. We can rewrite (1) as

$$\sum_{t=p}^{T} (y_t A(L))' \Omega^{-1} (y_t A(L)) = \sum_{t=p}^{T} (y_t - \Pi' x_t)' \Omega^{-1} (y_t - \Pi' x_t)$$

$$= \sum_{t=p}^{T} (y_t - \Pi' x_t + (\hat{\Pi}' - \Pi' x_t)' \Omega^{-1} (y_t - \Pi' x_t + (\hat{\Pi}' - \Pi' x_t)$$

$$= \sum_{t=p}^{T} (\hat{\epsilon}_t + (\hat{\Pi}' - \Pi' x_t)' \Omega^{-1} (\hat{\epsilon}_t + (\hat{\Pi}' - \Pi' x_t)$$

$$= \sum_{t=p}^{T} \hat{\epsilon}_t \Omega^{-1} \hat{\epsilon}_t + 2\hat{\epsilon}_t' \Omega^{-1} (\hat{\epsilon}' - \pi) x_t + x_t' (\hat{\Pi} - \Pi) \Omega^{-1} (\hat{\Pi}' - \Pi' x_t$$

The middle term is a scalar, so it is equal to its trace.

$$\sum_{t=p}^{T} 2\hat{\epsilon}_t \Omega^{-1} (\hat{\epsilon}' - \pi) x_t = \sum_{t=p}^{T} \text{trace} (2\hat{\epsilon}_t \Omega^{-1} (\hat{\epsilon}' - \pi) x_t)$$

$$= 2 \text{trace} (\Omega^{-1} (\hat{\epsilon}' - \pi) \sum_{t=p}^{T} x_t \hat{\epsilon}_t) = 0$$

$\sum x_t \hat{\epsilon}_t = 0$ because $\hat{\epsilon}_t$ are OLS residuals and must be orthogonal to x_t. So, we’re left with

$$\sum_{t=p}^{T} (y_t A(L))' \Omega^{-1} (y_t A(L)) = \sum_{t=p}^{T} \hat{\epsilon}_t \Omega^{-1} \hat{\epsilon}_t + x_t' (\hat{\Pi} - \Pi) \Omega^{-1} (\hat{\Pi}' - \Pi' x_t$$

Only the second term depends on Π. Ω^{-1} is positive definite, so $x_t' (\hat{\Pi} - \Pi) \Omega^{-1} (\hat{\Pi}' - \Pi' x_t$ is minimized when $x_t' (\hat{\Pi} - \Pi) = 0$ for all t, i.e. when $\Pi = \hat{\Pi}$. Thus, the OLS estimates are the maximum likelihood estimates.

To find the MLE for Ω, just consider the first order condition evaluated at $\Pi = \hat{\Pi}$:

$$\frac{\partial L}{\partial \Omega^{-1}} = \frac{\partial L}{\partial \Omega^{-1}} (\frac{(T - p) n}{2} \log(2\pi) + \frac{T - p}{2} \log |\Omega^{-1}| - \frac{1}{2} \sum_{t=p}^{T} \hat{\epsilon}_t \Omega^{-1} \hat{\epsilon}_t$$

$$= \frac{T - p}{2} \Omega - \frac{1}{2} \sum_{t=p}^{T} \hat{\epsilon}_t \hat{\epsilon}_t$$

$$\hat{\Omega} = \frac{1}{T - p} \sum_{t=p}^{T} \hat{\epsilon}_t \hat{\epsilon}_t$$

\square