Plan for Today

- We have covered the basics of producer and consumer theory and welfare analysis.
- The next step is to continue applying these to situations where externalities cause the First Welfare Theorem to be inapplicable.
- How to design policy to correct for these externalities?

Today
1. Public Goods and Externalities
2. Pigouvian Taxes

Then:
1. Coase Theorem
2. Cap-and-trade and related issues
3. Application: Sulfur and NOx cap-and-trade programs in the U.S.
4. Pollution trading simulation
5. Visit to MIT power plant
6. Midterm
Theories of Regulation

• Public Interest Theory of Regulation:
 • Government should regulate to promote the public interest.
 • Scope for government intervention to “make the First Welfare Theorem apply”
 • Imperfect information
 • Imperfect competition
 • Externalities
 • Normative

• Interest Group Theory of Regulation
 • Rent seeking is the primary driver of regulation
 • Firms and individuals lobby for regulations that will help their group
 • Positive
Taxonomy of Environmental Regulation

• Prescriptive Regulation
 • “Command-and-Control”
 • Technology standards
 • BACT/MACT
 • Performance standards
 • NSPS
 • Combinations, e.g. with cars

• Economic incentives
 • Pigouvian taxes
 • Marketable permits (cap-and-trade)
 • Liability
Prescriptive vs. Incentive Based Policies

- Benefits of Prescriptive Regulation
 - More flexible if damages vary across time and space
 - Pollution is “immoral,” and it shouldn’t be “marketized” (Sandel)
 - Administratively easier?
 - Monitoring easier?
 - More certain outcomes
 - Reduces incentives for innovation?

- Benefits of Economic Incentives
 - Equimarginal Principle holds
 - Less information required?
 - (on the production process of the industry)
 - Polluter pays only for emissions control, not for remaining damages (distorts product market)
Problem Set 1 due Friday

Then:
- No class Tuesday (MIT has a Monday Schedule)
- Next Thursday: Coase and Cap-and-Trade
- March 1: Topics in Cap-and-Trade
- March 3: Visit to MIT Cogen
- March 8: CAAA SO2 and NOx Case Study
- March 10: Emissions trading simulation

Change: Midterm is March 17th
- There will be one more problem set before then
- These next few classes are bread and butter undergrad environmental economics.
 - Midterm will look like this.
 - And some of the math is not really in the book.
Pigouvian Taxes

- Pigou (1920, 1932, 1962):
 - Externalities \Rightarrow private costs differ from social costs.
 - Correcting this is easy: change prices by the “wedge” between private and social costs.
 - Then the First Welfare Theorem applies again!

- In the environmental context:
 - “A Pigouvian tax is an emission fee exactly equal to the aggregate marginal damage caused by the emissions at the efficient level of pollution.”
Examples of Pigouvian Taxes

- Gas taxes
- Garbage disposal fees
- Water pollution taxes (some European countries)
- Oil Spill Liability Trust Fund (US)
- CFC Taxes (US, 1989)
- Hazardous chemicals
 - Established in 1980 to fund Superfund

- More info in Barthold (1994) JEP article
- Not all were originally intended as incentive taxes
 - Some designed around “user pays” principle.
Issues with Pigouvian Taxes

1. Setting the optimal Pigouvian tax
2. Entry and Exit
3. Market Power
4. Double Dividend
Entry and Exit

- Let’s also expand the game such that firms decide whether to exit or not
 - Fixed cost = 1/10

- Let’s say we want to be “fair,” and recycle half of tax revenues to each of the two firms
- Should the revenue recycling be available only to firms that don’t exit?
Entry and Exit: Takeaways

- Efficient outcome: Old firm exits.
- The revenue recycling is fully separable from the efficient outcome.
- “Recycling only to remaining firms” is like a subsidy to not exit. We don’t want that distortion.
 - In this example, the old inefficient firm is creating negative value. It only stays in business to claim the recycled tax revenue.
- Much of improving energy efficiency and pollution reductions is old plants exiting and new firms entering.
- Want to design environmental policy so as to not distort the entry/exit choice.

- Recycling is purely an equity issue
- Want to design any transfers for equity such that they do not generate additional inefficiencies.

- Can you tell a similar story with entry?
Market Power and Pigouvian Taxes

• Let’s say there’s no Pigouvian emissions tax. The intuition is that adding a tax at the level of marginal damages increases welfare.

• Question: What happens if the polluter has market power in the output market?
Market Power: Takeaways

- Market power is a pre-existing distortion.
- When the polluter has market power in the output market, production is less than the efficient level.
 - Thus pollution may already be less than the efficient level.
- Thus Pigouvian taxes may actually worsen welfare!
- Crucial to understand pre-existing distortions

- Another example: Regulated natural gas prices (Davis and Muehlegger 2010).
- Labor taxes are an additional pre-existing distortion.
The Double Dividend

• Most of government revenue is raised through taxes on labor and capital.
• These taxes distort the economy: we work less than we would in the optimum
 • A lump sum tax would be non-distortionary.
• Revenue Recycling Effect: Revenues raised through environmental taxes can be used to reduce labor taxes
• Tax Interaction Effect: Many goods are substitutes for leisure. Increasing their prices increases leisure demand further.
 • Since leisure demand was already too high, this introduces an additional distortion.
• Net effect = Pigouvian + Revenue Recycling – Interaction
• Ian Parry (1995): Optimal pollution tax=0.63*Marginal Damage
Takeaways from Today’s Class

1. Externalities cause market outcomes to be inefficient (1st Welfare Theorem)
2. Pigouvian taxes are a natural solution
3. This works nicely in many cases
4. But interactions with other distortions must be considered

• My attitude: Policymakers haven’t even gotten to (2). It is important for us as economists to understand (4), but this is the 20 in the 80/20 rule.
For Next Class

• This class was chapters 11 and 12
 • Interesting reading: Sandel (2000)
 • Double dividend material: Goulder (1998)
• Next class: Kolstad Chapter 13