14.581 International Trade
Class notes on 3/19/2013

1 Introduction

• Hallak and Levinsohn (2005): “Countries don’t trade. Firms trade.”

• Since around 1990, trade economists have increasingly used data from individual firms in order to better understand:
 – Why countries trade.
 – The mechanisms of adjustment to trade liberalization: mark-ups, entry, exit, productivity changes, factor price changes.
 – How important trade liberalization is for economic welfare.
 – Who are the winners and losers of trade liberalization (across firms)?

• This has been an extremely influential development for the field. These are all new and interesting questions that a firm-level approach has enabled access to.

2 Stylized Facts about Trade at the Firm-Level

• Exporting is extremely rare.

• Exporters are different:
 – They are larger.
 – They are more productive.
 – They use factors differently.
 – They pay higher wages.

• We will go through some of these findings first.

2.1 Exporting is Rare

• Two papers provide a clear characterization of just how rare exporting activity is among firms:
• Eaton, Kortum and Kramarz (2008) on French manufacturing. (We will have more to say about this paper in the next lecture, when we discuss how exporting varies across firms and partner countries.)

• It has been hard to match firm-level datasets (which typically contain data on total output/sales, but not sales by destination) to shipment-level trade datasets, but fortunately this has been achieved by the above authors (among others more recently).

<table>
<thead>
<tr>
<th>NAICS Industry</th>
<th>Percent of firms</th>
<th>Percent of firms that export</th>
<th>Mean exports as a percent of total shipments</th>
</tr>
</thead>
<tbody>
<tr>
<td>311 Food Manufacturing</td>
<td>0.8</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>312 Beverage and Tobacco Product</td>
<td>0.7</td>
<td>25</td>
<td>7</td>
</tr>
<tr>
<td>313 Textile Mills</td>
<td>1.0</td>
<td>25</td>
<td>13</td>
</tr>
<tr>
<td>314 Textile Product Mills</td>
<td>1.9</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>315 Apparel Manufacturing</td>
<td>3.3</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td>316 Leather and Allied Product</td>
<td>1.6</td>
<td>24</td>
<td>13</td>
</tr>
<tr>
<td>321 Wood Product Manufacturing</td>
<td>6.5</td>
<td>8</td>
<td>19</td>
</tr>
<tr>
<td>322 Paper Manufacturing</td>
<td>1.8</td>
<td>24</td>
<td>9</td>
</tr>
<tr>
<td>323 Printing and Related Support</td>
<td>5.0</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>324 Petroleum and Coal Products</td>
<td>4.4</td>
<td>18</td>
<td>12</td>
</tr>
<tr>
<td>325 Chemical Manufacturing</td>
<td>3.1</td>
<td>38</td>
<td>14</td>
</tr>
<tr>
<td>326 Petroleum and Related Support</td>
<td>4.4</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>327 Nonferrous Minerals/Product</td>
<td>1.0</td>
<td>9</td>
<td>18</td>
</tr>
<tr>
<td>331 Primary Metal Manufacturing</td>
<td>1.5</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>332 Fabricated Metal Product</td>
<td>10.0</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>333 Machinery Manufacturing</td>
<td>9.0</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>334 Computer and Electronic Product</td>
<td>8.5</td>
<td>28</td>
<td>21</td>
</tr>
<tr>
<td>335 Electrical Equipment, Appliance</td>
<td>5.2</td>
<td>38</td>
<td>13</td>
</tr>
<tr>
<td>336 Transportation Equipment</td>
<td>5.4</td>
<td>28</td>
<td>13</td>
</tr>
<tr>
<td>337 Furniture and Related Product</td>
<td>4.4</td>
<td>7</td>
<td>16</td>
</tr>
<tr>
<td>338 Miscellaneous Manufacturing</td>
<td>1.1</td>
<td>2</td>
<td>15</td>
</tr>
</tbody>
</table>

Aggregate manufacturing 100 18 14

Source: Data are from the 2002 U.S. Census of Manufacturers.

Note: The first column of numbers summarizes the distribution of manufacturing firms across their NAICS manufacturing industries. The second reports the share of firms in each industry that export. The final column reports mean exports as a percent of total shipments across all firms that export in the noted industry.

2.2 Exporters are Different

- The most influential findings about exporting and intra-industry heterogeneity have been related to:
 - Exporters being larger.
 - Exporters being more productive.

- But there are other ‘exporter premia’ too.
• Clearly there is an issue of selection versus causation here that is of fundamental importance (for policy and for testing theory).

– This difficult issue has been best tackled with respect to ‘exporting and productivity’, and we will discuss this shortly.

– For now, we focus on the stylized fact that concerns the association between exporting and some phenomenon (like higher wages).

Table 3
Exporter Premia in U.S. Manufacturing, 2002

<table>
<thead>
<tr>
<th></th>
<th>Exporter premia</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Log employment</td>
<td>1.19</td>
<td>0.97</td>
<td></td>
</tr>
<tr>
<td>Log shipments</td>
<td>1.48</td>
<td>1.08</td>
<td>0.08</td>
</tr>
<tr>
<td>Log value-added per worker</td>
<td>0.26</td>
<td>0.11</td>
<td>0.10</td>
</tr>
<tr>
<td>Log TFP</td>
<td>0.02</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Log wage</td>
<td>0.17</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>Log capital per worker</td>
<td>0.32</td>
<td>0.12</td>
<td>0.04</td>
</tr>
<tr>
<td>Log skill per worker</td>
<td>0.19</td>
<td>0.11</td>
<td>0.19</td>
</tr>
<tr>
<td>Additional covariates</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Source: Data are for 2002 and are from the U.S. Census of Manufactures.
Note: All results are from bivariate ordinary least squares regressions of the firm characteristic in the first column on a dummy variable indicating firm’s export status. Regressions in column 2 include industry fixed effects. Regressions in column 3 include industry fixed effects and log firm employment as controls. Total factor productivity (TFP) is computed as in Caves, Christensen, and Diewert (1982). “Capital per worker” refers to capital stock per worker. “Skill per worker” is nonproduction workers per total employment. All results are significant at the 1 percent level.

Table 8
Trading Premia in U.S. Manufacturing, 1997

<table>
<thead>
<tr>
<th></th>
<th>Exporter premia</th>
<th>Importer premia</th>
<th>Exporter & importer premia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Log employment</td>
<td>1.50</td>
<td>1.40</td>
<td>1.75</td>
</tr>
<tr>
<td>Log shipments</td>
<td>0.29</td>
<td>0.26</td>
<td>0.31</td>
</tr>
<tr>
<td>Log value-added per worker</td>
<td>0.23</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Log TFP</td>
<td>0.07</td>
<td>0.12</td>
<td>0.07</td>
</tr>
<tr>
<td>Log wage</td>
<td>0.29</td>
<td>0.25</td>
<td>0.33</td>
</tr>
<tr>
<td>Log capital per worker</td>
<td>0.17</td>
<td>0.13</td>
<td>0.20</td>
</tr>
<tr>
<td>Log skill per worker</td>
<td>0.04</td>
<td>0.06</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Source: Data are for 1997 and are for firms that appear in both the U.S. Census of Manufactures and the Linked Longitudinal Firm Trade Transaction Database (LFTTD).
Note: All results are from bivariate ordinary least squares regressions of the firm characteristic listed on the left on a dummy variable noted at the top of each column as well as industry fixed effects and firm employment as additional controls. Employment regressions omit firm employment as a covariate. Total factor productivity (TFP) is computed as in Caves, Christensen, and Diewert (1982).

2.3 Other Exporter Premia

- Examples of other exporter premia seen in the data:
 - Produce more products: BJRS (2007) and Bernard, Redding and Schott (2009)
 - Higher Wages: Frias, Kaplan and Verhoogen (2009) using employer-employee linked data from Mexico (i.e., when a given worker moves from a purely domestic firm to an exporting firm, his/her wage rises).
– More expensive (‘higher quality’?) material inputs: Kugler and Verhoogen (2008) using very detailed data on inputs used by Colombian firms.
– Innovate more: Aw, Roberts and Xu (2008).
– Pollute less: Halladay (2008)

2.3.1 Premia: Selection or Treatment Effects?

• Consider the ‘exporter productivity premium’, which has been found in many, many datasets.

• A key question is obviously whether these patterns in the data are driven by:
 – Selection: Firms have exogenously different productivity levels. All firms have the opportunity to export, but only the more productive ones (on average) choose to do so. A fixed cost of exporting delivers this in Melitz (2003), and Bertrand competition delivers this in BEJK (2003).
 – Treatment: Somehow, the very act of exporting raises firm productivity. Why?
 * Intra-industry competition
 * Exporting to a foreign market (and hence larger total market) allows a firm to expand and exploit economies of scale.
 * Learning by exporting.
 * Some exporting occurs through multinational firms, who may have incentives to teach their foreign affiliates how to be more productive.
 * Focus on ‘core competency’ products (i.e. productivity rise is just selection effect within firm).

• Of course, both of these two effects could be at work.

2.3.2 Premia: Selection or Treatment Effects?

• An important literature has tried to distinguish between these 2 effects:
 – Clerides, Lach and Tybout (QJE, 1997)
 – Bernard and Jensen (JIE, 1998)

• The conclusion of these studies is that the effect is predominantly selection.
 – However, as we shall see below, there is evidence from trade liberalization studies of firms becoming more productive after trade liberalization.
– And in more recent work, Trefler and Lileeva (QJE, 2009) and de Loecker (Ecta, 2011) improve upon the methods used in the above papers and find evidence for a treatment effect of exporting on productivity.

2.4 Firm-level Responses to Trade Liberalization

• An enormous literature has used firm-level panel datasets to explore how firms respond to trade liberalization episodes.

• This has been important for policy, as well as for the development of theory.

– Interestingly, the first available data (and the largest and most plausibly exogenous trade liberalization episodes) were from developing countries

– So using firm-level panel data to study trade issues has become an important sub-field in Development Economics (indeed surprisingly, there aren’t that many questions that firm-level data are used to look at in Development other than trade issues!)

2.5 Aggregate Industry Productivity

• Most of these studies have been concerned with the effects of trade liberalization on aggregate industry productivity.

• Unfortunately, one often cares about much more than this.

– Consumers may care about some industries more than others.

– Within industries, consumers may care about some firms’ varieties more than others’.

– Trade liberalization will also change the set of imported varieties, and this effect is obviously not counted at all in measures of an industry’s (purely domestic) productivity.

– Not all inputs are fully measured, so what one observes as productivity in the data (eg Y/L or TFP) is not true productivity.

– Relatedly, there are probably uncounted adjustment costs behind any liberalization episode.

• Data limitations have presented a full and integrated assessment of all of these channels.

– But there might be ways to make progress here.

– Theory can be particularly informative in shedding light on the magnitude of some of these effects.

8
2.5.1 Aggregate Industry Productivity: A Decomposition I

- A helpful way of thinking about the effects of trade liberalization on aggregate industry productivity is due to Tybout and Westbrook (1995) among others.

- Notation:
 - Output of firm i in year t is: $q_{it} = A_{it} f(v_{it})$, where A_{it} is firm-level TFP and v_{it} is a vector of inputs.
 - Let $f(v_{it}) = \gamma(g(v_{it}))$, where the function $g(.)$ is CRS. Then all economies of scale are in $\gamma(.)$.
 - Let $B_{it} = q_{it}/g(v_{it})$ be measured productivity.
 - And let $S_{it} = g(v_{it})/\sum_i g(v_{it})$ be the firm’s market share in its industry, but where market shares are calculated on the basis of inputs.
 - And let $\mu_{it} = \frac{d \ln(q_{it})}{d \ln(g_{it})}$.

2.5.2 Aggregate Industry Productivity: A Decomposition II

- Then industry-wide average productivity ($B_t = \sum_i S_{it} B_{it}$) will change according to:

\[
\frac{dB_t}{B_t} = \sum_i \left(\frac{dq_{it}}{g_{it}} \right) \left(\mu_{it} - 1 \right) \left(\frac{q_{it}}{q_t} \right) + \sum_i \frac{dS_{it}}{B_{it}} \left(\frac{B_{it}}{B_t} \right) \\
+ \sum_i \left(\frac{dA_{it}}{A_{it}} \right) \left(\frac{q_{it}}{q_t} \right)
\]

- The literature here has looked at the extent to which each of these terms responds to a liberalization of trade policy.

2.6 Trade Liberalization

2.6.1 Scale Effects

- Not much work on this.

- But Tybout (2001, Handbook chapter) argues that since exporting plants are already big it is unlikely that there is a large potential for trade to expand underexploited scale economies.

- Likewise, since the bulk of production in any industry is concentrated on already-large firms, the scope for the ‘scale effects’ term to matter in terms of changes is small.
2.6.2 Within- and Between-Firm Effects

• This is where the bulk of work has been done.

• Indeed, the finding of significant aggregate productivity gains from between-firm reallocations was an important impetus for work on heterogeneous firm models in trade.
 – The finding that reallocations of factors (and market share) from low-B_{it} to high-B_{it} firms can be empirically significant was taken by some as evidence for ‘another’ source of welfare gains from trade. (Though this is really just Ricardian gains from trade at work within an industry rather than across industries.)

• However, it is now better recognized that aggregate industry productivity is not equal to welfare and thus one needs to be careful.
 – A stark example of this, to my mind, is Arkolakis, Costinot and Rodriguez-Clare (AER, 2011) who show that the Krugman (1980) and Melitz (2003, but with Pareto productivities added) models have exactly the same welfare implications.
 – Thus, while the two models seem identical except for the fact that Melitz’s heterogeneous firms create the scope for productivity-enhancing reallocation effects, other welfare effects induced by trade liberalization go in the opposite direction.

• We will discuss some recent and influential papers in this area.

2.6.3 Pavcnik (ReStud 2002)

• Pavcnik (2003) recognized that a clear measure of $\frac{dP_t}{P_t}$ and each of its two decomposition terms $\sum_i dS_{it} \left(\frac{q_{it}}{A_{it}} \right)$ and $\sum_i \left(\frac{dA_{it}}{A_{it}} \right) \left(\frac{q_{it}}{q_{it}} \right)$ required a good measure of B_{it}.

• It is hard to measure these TFP terms B_{it} because of:
 – Simultaneity: Firms probably observe B_{it} and take actions (eg how much factor inputs to use) based on it. The econometrician doesn’t observe B_{it}, but can infer it by comparing outputs to factor inputs used. But this only works if one is careful to ‘reverse-engineer’ the firm’s decisions about factor input choices that were based on B_{it}.
 – Selection: Firms with low B_{it} might drop out of the sample and thus not be observed to the same extent as high B_{it} firms.

• Pavcnik (2002) was the first to apply to trade liberalization Olley and Pakes (1996)’s techniques for dealing with simultaneity and selection.
 – We discuss this briefly first before returning to the decomposition.
3 Research work that has been done

3.1 Olley and Pakes (Ecta, 1996)

- Drop the firm subscript i (but everything below is at the firm level).
- Let x_t be variable inputs that can be adjusted freely, and let k_t be capital which takes a period to adjust and is costly to do so (usual convex costs).
- So output is: $y_t = \beta_0 + \beta x_t + \beta_k k_t + \omega_t + \mu_t$, where ω_t is TFP that the firm knows and μ_t is the TFP that the firm does not know. (The econometrician knows neither.) Both are Markov random variables (which is not innocuous actually, since we are trying to estimate TFP in order to relate it to trade policy; is trade policy Markovian?)
- Ericsson and Pakes (1995) show that:
 - It is a Markov Perfect Equilibrium for firms to exit unless ω_t exceeds some cutoff $\omega_t(k_t)$.
 - Investment behaves as: $i_t = i_t(\omega_t, k_t)$, where $i_t(.)$ is strictly increasing in both arguments.
- First step: estimate β.
- Estimating β (the coefficient on variable inputs) is easier since we’re assuming that any firm in the sample in year t woke up in t, observed its ω_t, and chose exactly as many variable inputs x_t as it wanted.
 - Invert $i_t = i_t(\omega_t, k_t)$: $\omega_t = \theta_t(i_t, k_t)$. Note that we have no idea what the function $\theta(.)$ looks like.
 - Then we have $y_t = \beta x_t + \lambda_t(k_t, i_t) + \mu_t$, where $\lambda_t(k_t, i_t) \equiv \beta_0 + \beta_k k_t + \theta_t(k_t, i_t)$.
 - Estimate this function y_t and control for $\lambda(.)$ non-parametrically.
 - This is typically done with a ‘series/polynomial estimator’: some high-order (Pavcnik uses 3rd-order) polynomial in k_t and i_t.
 - With $\lambda_t(.)$ controlled for, the coefficient on x_t is just β.
- Second step: estimate β_k.
- This is more complicated, as the firm makes an investment decision i_t in year t that is forward-looking, and this decision determines k_{t+1}. The firms know more about ω_{t+1} than we do, so we need to worry about this.
 - Let the firm’s expectation about ω_{t+1} be: $E[\omega_{t+1}|\omega_t, k_t] = g(\omega_t) - \beta_0$.
 We have no idea what $g(.)$ is, but it should be strictly upward-sloping.
 - Note that $g(\omega_t) = g(\theta_t(i_t, k_t)) = g(\lambda_t - \beta_k k_t)$. We already have estimates of λ_t from Step 1 so think of λ_t as observed.
- So we have: \(y_{t+1} - \beta x_{t+1} = \beta_k k_{t+1} + g(\lambda_t - \beta_k k_t) + \xi_{t+1} + \mu_{t+1} \).
 \((\xi_{t+1} \) is defined by: \(\xi_{t+1} = \omega_{t+1} - E[\omega_{t+1}|\omega_t, k_t] \).
- The goal is to estimate \(\beta_k \), which we can do here with non-parametric functions \(g(.) \) and non-linear estimation (\(\beta_k \) appears inside \(g(.) \)).

- However, the above procedure (in Step 2) is invalid if some firms will exit the sample.
 - That is, we only observe the firms whose expectations about \(\omega_{t+1} \) exceed the continuation cut-off \(\omega_t(k_t) \).

- OP (1996) derive another correction for this:
 - let \(P_t = \text{Pr}(\text{continuing in } t+1) = \text{Pr}[\omega_{t+1} > \omega_{t+1}(k_{t+1})|\omega_{t+1}(k_{t+1}), \omega_t] = p_t(\omega_t, \omega_{t+1}(k_{t+1})) \).
 - And let \(\Phi(\omega_t, \omega_{t+1}(k_{t+1})) = E[\omega_{t+1}|\omega_t, \omega_{t+1} > \omega_{t+1}(k_{t+1})] + \beta_0 \).
 - So \(\Phi(\omega_t, \omega_{t+1}(k_{t+1})) = \Phi(\omega_t, P_t^{-1}(P_t(\omega_t))) = \Phi(\omega_t, P_t) \).
 - Hence we should really estimate \(y_{t+1} - \beta x_{t+1} = \beta_k k_{t+1} + \Phi(\lambda_t - \beta_k k_t, P_t) + \xi_{t+1} + \mu_{t+1} \).
 - This requires an estimate of \(P_t \), the probability of survival. OP show that \(P_t = p_t(i_t, k_t) \) so we can estimate \(P_t \) from a series polynomial probit regression of a survival dummy on polynomials in \(i_t \) and \(k_t \).

3.2 Levinsohn and Petrin (ReStud, 2003)

- A limitation of the OP procedure is that it requires investment to be non-zero (recall that \(i_t(.) \) is strictly increasing).

- In the OP model this will never happen, but in the data it does.
 - Caballero and Engel and others have done work on models that do include this 'lumpy investment'.
 - Clearly the extent of the problem depends on the length of a 'period' \(t \) in the data.
 - Long periods can mask the lumpy nature of investment but it is probably still a constraint on investment that firms have to worry about).

- Levinsohn and Petrin (2003) introduce a procedure for dealing with this (but Pavcnik doesn’t use it).

3.3 Pavcnik (2002): Data and Setting

- Chile’s trade liberalization:
As usual with these trade liberalization episodes, there were a lot of other things going on at the same time.

- Pavcnik has plant-level panel data from 1979-1986
 - All plants (in all years open) with more than 10 workers
 - Unfortunately, no ability to link plants to trading behavior.
 - Closest link is to the industry, for which we know (from other sources) how much trade is going on. On this basis, Pavcnik characterizes firms (ie four-digit industries) as ‘import competing’ (imports exceed 15% of domestic output), ‘export-oriented’ (export over 15% of output) or ‘non-tradable’.
 - One would really want to use tariffs at the industry level and exploit time variation in these (as some other studies have done).

<table>
<thead>
<tr>
<th>Plants Active in 1979 but not in 1986</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trade Orientation</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>All trade orientations</td>
</tr>
<tr>
<td>Export-oriented</td>
</tr>
<tr>
<td>Import-competing</td>
</tr>
<tr>
<td>Nontraded</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exiting plants of a given trade orientation as a share of all plants active in 1979</th>
</tr>
</thead>
<tbody>
<tr>
<td>Export-oriented</td>
</tr>
<tr>
<td>Import-competing</td>
</tr>
<tr>
<td>Nontraded</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exiting plants of a given trade orientation as a share of all exiting plants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Export-oriented</td>
</tr>
<tr>
<td>Import-competing</td>
</tr>
<tr>
<td>Nontraded</td>
</tr>
</tbody>
</table>

Note: This figure also includes plants that exited after the end of 1979, but before the end of 1980 and were excluded in the estimation because of missing capital variable.
Note: The reported growth figures are relative to 1979.

All standard errors in column 5 are bootstrapped using 1000 replications. I have also estimated OLS and fixed effects regressions excluding these observations. The coefficients do not change much. All standard errors in columns 5 are bootstrapped using 1000 replications.

Decomposition of Aggregate Productivity Growth

Table:

<table>
<thead>
<tr>
<th>Industry</th>
<th>Year</th>
<th>Aggregate Productivity</th>
<th>Unweighted Covariance</th>
<th>Weighted Covariance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Textiles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wood</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paper</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemicals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glass</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic metals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machinery</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The reported growth figures are relative to 1979.

Image by MIT OpenCourseWare.
Estimates of Equation 12

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Export-oriented</td>
<td>0.166</td>
<td>0.037**</td>
<td>0.196</td>
<td>0.030**</td>
<td>0.112</td>
<td>0.031**</td>
<td>0.098</td>
<td>0.048**</td>
<td>0.095</td>
<td>0.048**</td>
<td>0.100</td>
<td>0.046**</td>
<td></td>
</tr>
<tr>
<td>Import-competing</td>
<td>0.105</td>
<td>0.021**</td>
<td>0.105</td>
<td>0.021**</td>
<td>0.103</td>
<td>0.021**</td>
<td>-0.024</td>
<td>0.040</td>
<td>-0.025</td>
<td>0.040</td>
<td>-0.007</td>
<td>0.039</td>
<td></td>
</tr>
<tr>
<td>ex_80</td>
<td>-0.005</td>
<td>0.025**</td>
<td>-0.053</td>
<td>0.025**</td>
<td>-0.055</td>
<td>0.025**</td>
<td>-0.071</td>
<td>0.026**</td>
<td>-0.068</td>
<td>0.026**</td>
<td>-0.071</td>
<td>0.026**</td>
<td></td>
</tr>
<tr>
<td>ex_81</td>
<td>-0.009</td>
<td>0.028**</td>
<td>-0.007</td>
<td>0.028**</td>
<td>-0.100</td>
<td>0.028**</td>
<td>-0.117</td>
<td>0.027**</td>
<td>-0.110</td>
<td>0.027**</td>
<td>-0.139</td>
<td>0.027**</td>
<td></td>
</tr>
<tr>
<td>ex_82</td>
<td>0.005</td>
<td>0.032</td>
<td>0.007</td>
<td>0.032</td>
<td>0.003</td>
<td>0.032</td>
<td>-0.054</td>
<td>0.028*</td>
<td>-0.042</td>
<td>0.028</td>
<td>-0.055</td>
<td>0.028*</td>
<td></td>
</tr>
<tr>
<td>ex_83</td>
<td>0.021</td>
<td>0.032</td>
<td>0.023</td>
<td>0.032</td>
<td>0.021</td>
<td>0.032</td>
<td>-0.036</td>
<td>0.029</td>
<td>-0.025</td>
<td>0.030</td>
<td>-0.038</td>
<td>0.029</td>
<td></td>
</tr>
<tr>
<td>ex_84</td>
<td>0.050</td>
<td>0.031</td>
<td>0.051</td>
<td>0.031</td>
<td>0.050</td>
<td>0.031</td>
<td>0.007</td>
<td>0.028</td>
<td>0.017</td>
<td>0.028</td>
<td>0.007</td>
<td>0.028</td>
<td></td>
</tr>
<tr>
<td>ex_85</td>
<td>0.030</td>
<td>0.030</td>
<td>0.032</td>
<td>0.031</td>
<td>0.028</td>
<td>0.030</td>
<td>-0.001</td>
<td>0.029</td>
<td>0.013</td>
<td>0.030</td>
<td>-0.003</td>
<td>0.029</td>
<td></td>
</tr>
<tr>
<td>ex_86</td>
<td>0.043</td>
<td>0.036</td>
<td>0.043</td>
<td>0.036</td>
<td>0.043</td>
<td>0.036</td>
<td>0.008</td>
<td>0.034</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>im_80</td>
<td>0.011</td>
<td>0.014</td>
<td>0.011</td>
<td>0.014</td>
<td>0.010</td>
<td>0.014</td>
<td>0.013</td>
<td>0.014</td>
<td>0.013</td>
<td>0.014</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>im_81</td>
<td>0.047</td>
<td>0.015**</td>
<td>0.047</td>
<td>0.015**</td>
<td>0.046</td>
<td>0.015**</td>
<td>0.044</td>
<td>0.014**</td>
<td>0.044</td>
<td>0.014**</td>
<td>0.044</td>
<td>0.014**</td>
<td></td>
</tr>
<tr>
<td>im_82</td>
<td>0.032</td>
<td>0.016**</td>
<td>0.034</td>
<td>0.017**</td>
<td>0.038</td>
<td>0.018*</td>
<td>0.024</td>
<td>0.015*</td>
<td>0.024</td>
<td>0.015*</td>
<td>0.025</td>
<td>0.015*</td>
<td></td>
</tr>
<tr>
<td>im_83</td>
<td>0.042</td>
<td>0.017**</td>
<td>0.043</td>
<td>0.017**</td>
<td>0.043</td>
<td>0.017**</td>
<td>0.040</td>
<td>0.017**</td>
<td>0.041</td>
<td>0.017**</td>
<td>0.042</td>
<td>0.017**</td>
<td></td>
</tr>
<tr>
<td>im_84</td>
<td>0.062</td>
<td>0.017**</td>
<td>0.062</td>
<td>0.017**</td>
<td>0.063</td>
<td>0.017**</td>
<td>0.059</td>
<td>0.015**</td>
<td>0.059</td>
<td>0.015**</td>
<td>0.061</td>
<td>0.015**</td>
<td></td>
</tr>
<tr>
<td>im_85</td>
<td>0.103</td>
<td>0.017**</td>
<td>0.104</td>
<td>0.017**</td>
<td>0.104</td>
<td>0.017**</td>
<td>0.101</td>
<td>0.015**</td>
<td>0.102</td>
<td>0.016**</td>
<td>0.101</td>
<td>0.015**</td>
<td></td>
</tr>
<tr>
<td>im_86</td>
<td>0.071</td>
<td>0.019**</td>
<td>0.073</td>
<td>0.017***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: ** and * indicate significance at a 5% and 10% level, respectively. Standard errors are corrected for heteroscedasticity. Standard errors in columns 1–3 are also adjusted for repeated observations on the same plant. Columns 1, 2, 4, and 5 do not include observations in 1986 because one cannot define exit for the last year of a panel.

3.4 Trefler (AER, 2004)

- Trefler evaluates how Canadian industries and plants responded to Canada’s trade agreement with the United States in 1989.
- This is a particularly ‘clean’ trade liberalization (not a lot of other components of some broader ‘liberalization package’ as was often the case in developing country episodes).
- Further, this is a rare example in the literature of a reciprocal trade agreement:
 - Canada lowered its tariffs on imports from the US, so Canadian firms in import-competing industries face more competition.
 - And the US lowered its tariffs on Canadian imports, so Canadian firms in export-oriented industries face lower costs of penetrating US markets.
- So this is a great ‘experiment’. Unfortunately the data aren’t as rich as Pavcnik’s so Trefler can’t look at everything he’d like to.
3.4.1 Empirical Approach

- Define the policy 'treatment' variables:
 - Let τ_{it}^{CA} be the 'FTA-mandated' Canadian tariff on US imports in industry i and year t. This is the gap between the solid and dotted lines in the previous figure (top panel), i.e. the difference between the tariff on US imports relative to ROW imports.
 - Let τ_{it}^{US} be the US equivalent.

- Trefler estimates the following 'diff-in-diff' regression:

\[
\begin{align*}
(\Delta y_{i1} - \Delta y_{i0}) &= \theta + \beta^{CA}(\Delta \tau_{i1}^{CA} - \Delta \tau_{i0}^{CA}) + \beta^{US}(\Delta \tau_{i1}^{US} - \Delta \tau_{i0}^{US}) \\
&+ \gamma(\Delta y_{i1}^{US} - \Delta y_{i0}^{US}) + \delta(\Delta b_{i1} - \Delta b_{i0}) + \nu_{i1}
\end{align*}
\]

- Trefler estimates the following 'diff-in-diff' regression:

\[
\begin{align*}
(\Delta y_{i1} - \Delta y_{i0}) &= \theta + \beta^{CA}(\Delta \tau_{i1}^{CA} - \Delta \tau_{i0}^{CA}) + \beta^{US}(\Delta \tau_{i1}^{US} - \Delta \tau_{i0}^{US}) \\
&+ \gamma(\Delta y_{i1}^{US} - \Delta y_{i0}^{US}) + \delta(\Delta b_{i1} - \Delta b_{i0}) + \nu_{i1}
\end{align*}
\]

- Notation:
 - ΔX_{is} is defined as the annualized log growth of a variable 'X$_i$' over all years in period s.
 - There are two periods s: that before the FTA (1980-1986, $s = 0$), and that after the FTA (1988-1996, $s = 1$).

\(-\ y\) is any outcome variable. Employment and output per worker are the two main outcomes of interest.
\(y_{US}\) is the same outcome variable but for industries in the US. This is meant to act as a control, but it needs an IV.
\(b\) is ‘business conditions’: measures based on GDP and real exchange rates.

- Trefler (2004) also looks at plant-level data.
 - A caveat is that the paper focuses on plants that have good data, which is relatively large plants only.
 - Another caveat is that the above approach requires units of analysis to be observed in 1980, 1986, 1988 and 1996. So any exiting or newly entering firms are not part of the analysis.

- To do this Trefler (2004) runs exactly the same regression as above on plants within industries, rather than on industries. Note however that the ‘treatment’ variable \(\tau_{CA}^{CA}\) does not differ across plants.
 - This is attractive here, as it means we can directly compare the tariff coefficient in the industry regression with that in the plant-level regression—if these coefficients differ, this is suggestive of reallocation effects across plants generating aggregate industry-level losses/gains.
 - Trefler and Lileeva (QJE 2009), which we will discuss later in the course, does construct firm-specific tariffs by using tariffs on each of the ‘products’ (6-digit industries) that each firm produces.

3.4.2 Trefler (2004): Results on Employment

Plant level, OLS										
	Canadian tariffs	U.S. tariffs	Employment	U.S. control	Adjusted	OverID	Revenue	PTA impact		
Industry level	\(\Delta_{t}p_{i}t\)	\(\Delta_{t}p_{i}\)	\(b_{i}t\)	\(y_{i}t\)	\(R^2\)	\(H_0\)	\(H_1\)	\(P\)		
Industry level, OLS	1	\(-0.12\)	0.16	0.76	0.06	0.15	0.22	0.24	0.08	0.26
Industry level, IV	2	\(-0.01\)	0.11	0.35	0.01	0.15	0.25	0.04	0.08	0.06
Industry level, IV	3	\(-0.01\)	0.09	0.13	0.02	0.10	0.32	0.06	0.08	0.06

Note: The dependent variable is the log of employment. The estimating equation is equal to (1) for the industry-level regressions and equation (2) for the plant-level regressions. \(\Delta_{t}p_{i}t\) is used so that it generates the log point impact of the Canadian tariff changes on employment in the most exposed import-competing industries. \(\Delta_{t}p_{i}\) is used so that it gives the long point impact of the U.S. tariff changes on employment in the most exposed, export-oriented industries. The "Total PTA impact" column reports the point impact of the tariff changes on employment in all 215 industries. The "Plant-level Change" column reports average shares across plants in the industry-level regression and equation (2) for the plant-level regressions. In rows 4 and 7, the business conditions variable is omitted so that business conditions are controlled for by double-differencing \(\Delta_{t}p_{i}t\) - \(\Delta_{t}p_{i}\) in row 4 the U.S. control is replaced by the \(\Delta_{t}p_{i}t\) control. In row 8, the \(\tau_{CA}^{CA}\) variable is the same as in the industry-level regression. In rows 9 and 10, the business conditions variable is included so that business conditions are controlled for by double-differencing \(\Delta_{t}p_{i}t\) - \(\Delta_{t}p_{i}\) in row 9 and 10, the U.S. control is replaced by the \(\Delta_{t}p_{i}t\) control. In row 11, the \(\tau_{CA}^{CA}\) variable is the same as in the industry-level regression. In rows 12 and 13, the business conditions variable is included so that business conditions are controlled for by double-differencing \(\Delta_{t}p_{i}t\) - \(\Delta_{t}p_{i}\) in row 12 and 13, the U.S. control is replaced by the \(\Delta_{t}p_{i}t\) control. In row 14, the \(\tau_{CA}^{CA}\) variable is the same as in the industry-level regression.

A well-known (and probably severe) problem with measuring productivity is that we rarely observe output y_{it} properly.

Instead, in most settings, one sees revenues/sales r_{it} at the plant level but some price measure only at the industry level: p_i.

Klette and Griliches (1995) show the consequences of this:

- What we think is a measure of firm-level TFP (eg $y_{it}/g(v_{it})$) is really a mixture of firm-level TFP, firm-level mark-ups, and firm-level demand-shocks.

This is bad for studies of productivity. But it is worse for studies like Pavcnik (2002) above that want to relate economic change (like trade liberalization) to changes in productivity.

- Economic change (including trade liberalization) may change mark-ups and demand.

- Indeed, theory such as BEJK (2003) and Melitz and Ottaviano (ReStud, 2008) suggests that mark-ups will change.

- And Tybout (2000, Handbook chapter) reviews evidence of mark-ups (and profit margins) changing.

- de Loecker and Warzynski (AER 2012) extend Hall’s (1988) method for measuring mark-ups and finds that they differ by firm trading status.
3.6 de Loecker (2010)

- One natural solution would be to work in settings where we do observe good firm-level price data. But this is quite hard.

- de Loecker (2010) proposes a more model-driven solution:
 - He specifies a demand system (CES across each firm’s variety, plus firm-specific demand shifters).
 - This leads to an estimating equation like that used in OP (1996), but with two complications.
 - First, each firm’s demand-shifter appears on the RHS. He effectively instruments for these using trade reform variables (quotas, in a setting of Belgian textiles).
 - Second, each coefficient (eg \(\beta \) on capital) is no longer the production function parameter, but rather the production function parameter times the markup. But there is a way to correct for this after estimating another coefficient (that on total industry quantity demanded) which is the CES taste parameter (from which one can infer the markup).

- de Loecker finds that the measured productivity effects of Belgium’s textile industry reform fall by 50% if you use his method compared to the pure OP (ie Pavcnik) method.

4 Possible Ideas for Future Work

- On the export premium: what is so special (if anything) about goods crossing international borders?

- Can we do firm-level studies that pay attention to and estimate GE effects?

- Do the ‘exporting is rare’ or ‘exporters are different’ stylized facts change our interpretation of existing Ricardian or HO trade studies?

- Can firm-level studies shed light on the importance of CA vs IRTS in driving trade?

- Estimate trade liberalizations with a stronger connection to welfare (not just pure productivity).

- Could some new empirical IO tools (to study competition, interaction, demand systems, entry models, multiple equilibria) improve our approach to trade problems at the firm-level?

- How does trade affect (or behave in an environment of) misallocations (a la Hseih and Klenow (QJE, 2009))?