14.581 International Trade
Class notes on 4/8/2013

1 The Armington Model

1.1 Equilibrium

- Labor endowments
 \[L_i \text{ for } i = 1, \ldots, n \]
- CES utility ⇒ CES price index
 \[P_j^{1-\sigma} = \sum_{i=1}^{n} (w_i \tau_{ij})^{1-\sigma} \]
- Bilateral trade flows follow gravity equation:
 \[X_{ij} = \frac{(w_i \tau_{ij})^{1-\sigma}}{\sum_{l=1}^{n} (w_l \tau_{lj})^{1-\sigma}} w_j L_j \]
- In what follows \(\varepsilon \equiv -\frac{d \ln X_{ij}}{d \ln \tau_{ij}} = \sigma - 1 \) denotes the trade elasticity
- Trade balance
 \[\sum_{i} X_{ji} = w_j L_j \]

1.2 Welfare Analysis

- Question:
 Consider a foreign shock: \(L_i \rightarrow L_i' \) for \(i \neq j \) and \(\tau_{ij} \rightarrow \tau_{ij}' \) for \(i \neq j \). How do foreign shocks affect real consumption, \(C_j \equiv w_j/P_j \)?

- Shephard’s Lemma implies
 \[d \ln C_j = d \ln w_j - d \ln P_j = -\sum_{i=1}^{n} \lambda_{ij} (d \ln c_{ij} - d \ln c_{jj}) \]
 with \(c_{ij} \equiv w_i \tau_{ij} \) and \(\lambda_{ij} \equiv X_{ij}/w_j L_j \).
- Gravity implies
 \[d \ln \lambda_{ij} - d \ln \lambda_{jj} = -\varepsilon (d \ln c_{ij} - d \ln c_{jj}) . \]

\(^1\)The notes are based on lecture slides with inclusion of important insights emphasized during the class.
• Combining these two equations yields

\[d \ln C_j = \sum_{i=1}^{n} \lambda_{ij} \left(d \ln \lambda_{ij} - d \ln \lambda_{jj} \right) \frac{1}{\varepsilon}. \]

• Noting that \(\sum_i \lambda_{ij} = 1 \implies \sum_i \lambda_{ij} d \ln \lambda_{ij} = 0 \) then

\[d \ln C_j = -\frac{d \ln \lambda_{jj}}{\varepsilon}. \]

• Integrating the previous expression yields (\(\hat{x} = x' / x \))

\[\hat{C}_j = \lambda_{jj}^{-1/\varepsilon}. \]

• In general, predicting \(\lambda_{jj} \) requires (computer) work
 – We can use exact hat algebra as in DEK (Lecture #3)
 – Gravity equation + data \(\{\lambda_{ij}, Y_j\} \), and \(\varepsilon \)

• But predicting how bad would it be to shut down trade is easy...
 – In autarky, \(\lambda_{jj} = 1 \). So

\[C_j^A / C_j = \lambda_{jj}^{1/\varepsilon} \]

 – Thus gains from trade can be computed as

\[GT_j \equiv 1 - C_j^A / C_j = 1 - \lambda_{jj}^{1/\varepsilon} \]

1.3

1.4 Gains from Trade

• Suppose that we have estimated trade elasticity using gravity equation
 – Central estimate in the literature is \(\varepsilon = 5 \)

• We can then estimate gains from trade:
2 Gravity Models and the Gains from Trade:

ACR (2012)

2.1 Motivation

- New Trade Models
 - Micro-level data have lead to new questions in international trade:
 * How many firms export?
 * How large are exporters?
 * How many products do they export?
 - New models highlight new margins of adjustment:
 * From inter-industry to intra-industry to intra-firm reallocations

- Old question:
 - How large are the gains from trade (GT)?

- ACR’s question:
 - How do new trade models affect the magnitude of GT?

2.2 ACR’s Main Equivalence Result

- ACR focus on gravity models
 - PC: Armington and Eaton & Kortum ’02
 - MC: Krugman ’80 and many variations of Melitz ’03

- Within that class, welfare changes are \((\hat{x} = x' / x)\)
 \[
 \hat{C} = \lambda^{1/\varepsilon}
 \]
• **Two sufficient statistics** for welfare analysis are:
 - Share of domestic expenditure, λ;
 - Trade elasticity, ε

• **Two views** on ACR’s result:
 - Optimistic: welfare predictions of Armington model are more robust than you thought
 - Pessimistic: within that class of models, micro-level data do not matter

2.3 **Primitive Assumptions**

Preferences and Endowments

• **CES utility**
 - Consumer price index,
 $$P_i^{1-\sigma} = \int_{\omega \in \Omega} p_i(\omega)^{1-\sigma} d\omega,$$

• **One factor of production**: labor
 - $L_i \equiv$ labor endowment in country i
 - $w_i \equiv$ wage in country i

Technology

• **Linear cost function:**
 $$C_{ij} (\omega, t, q) = \underbrace{q w_i \tau_{ij} \alpha_{ij} (\omega) t^{\frac{1-\sigma}{\sigma}}}_{\text{variable cost}} + \underbrace{w_i^{1-\beta} w_j^{\beta} \xi_{ij} \phi_{ij} (\omega) m_{ij} (t)}_{\text{fixed cost}},$$

q : quantity,
τ_{ij} : iceberg transportation cost,
$\alpha_{ij} (\omega)$: good-specific heterogeneity in variable costs,
ξ_{ij} : fixed cost parameter,
$\phi_{ij} (\omega)$: good-specific heterogeneity in fixed costs.
$m_{ij} (t)$: cost for endogenous destination specific technology choice, t,
$$t \in \left[t, t' \right], \ m_{ij}' > 0, \ m_{ij}'' \geq 0$$
• Heterogeneity across goods
 \[G_j (\alpha_1, ..., \alpha_n, \phi_1, ..., \phi_n) \equiv \\{ \omega \in \Omega \mid \alpha_{ij} (\omega) \leq \alpha_i, \phi_{ij} (\omega) \leq \phi_i, \forall i \} \]

Market Structure
• **Perfect competition**
 – Firms can produce any good.
 – No fixed exporting costs.

• **Monopolistic competition**
 – Either firms in \(i \) can pay \(w_i F_i \) for monopoly power over a random good.
 – Or exogenous measure of firms, \(N_i < N \), receive monopoly power.

• Let \(N_i \) be the measure of goods that can be produced in \(i \)
 – Perfect competition: \(N_i = N \)
 – Monopolistic competition: \(N_i < N \)

2.4 Macro-Level Restrictions

Trade is Balanced
• Bilateral trade flows are
 \[X_{ij} = \int_{\omega \in \Omega_{ij} \subset \Omega} x_{ij} (\omega) \, d\omega \]

• **R1** *For any country \(j \),*
 \[\sum_{i \neq j} X_{ij} = \sum_{i \neq j} X_{ji} \]
 – Trivial if perfect competition or \(\beta = 0 \).
 – Non trivial if \(\beta > 0 \).

Profit Share is Constant
• **R2** *For any country \(j \),*
 \[\Pi_j / (\sum_{i=1}^n X_{ji}) \text{ is constant} \]
 where \(\Pi_j \): aggregate profits gross of entry costs, \(w_i F_i \), (if any)
Trivial under perfect competition.
Direct from Dixit-Stiglitz preferences in Krugman (1980).
Non-trivial in more general environments.

CES Import Demand System

- Import demand system

\[(w, N, \tau) \rightarrow X \]

- R3

\[\varepsilon_{ij}^{ii'} = \frac{\partial \ln (X_{ij}/X_{jj})}{\partial \ln \tau_{i'j}} = \begin{cases}
\varepsilon < 0 & i = i' \neq j \\
0 & \text{otherwise}
\end{cases} \]

Note: symmetry and separability.

CES Import Demand System

- The trade elasticity \(\varepsilon \) is an upper-level elasticity: it combines
 - \(x_{ij}(\omega) \) (intensive margin)
 - \(\Omega_{ij} \) (extensive margin).

- R3 \(\implies \) complete specialization.

- R1-R3 are not necessarily independent
 - If \(\beta = 0 \) then R3 \(\implies \) R2.

Strong CES Import Demand System (AKA Gravity)

- R3' The IDS satisfies

\[X_{ij} = \frac{\chi_{ij} \cdot M_i \cdot (w_{i\tau ij})^{\varepsilon} \cdot Y_j}{\sum_{i'=1}^{n} \chi_{i'j} \cdot M_{i'} \cdot (w_{i'\tau i'j})^{\varepsilon}} \]

where \(\chi_{ij} \) is independent of \((w, M, \tau)\).

- Same restriction on \(\varepsilon_{ij}^{ii'} \) as R3 but, but additional structural relationships

2.5 Welfare results

- State of the world economy:

\[Z \equiv (L, \tau, \xi) \]

- Foreign shocks: a change from \(Z \) to \(Z' \) with no domestic change.
2.6 Equivalence

- **Proposition 1**: Suppose that R1-R3 hold. Then
 \[\hat{W}_j = \hat{\lambda}_{jj}^{1/\varepsilon} . \]

- Implication: 2 sufficient statistics for welfare analysis $\hat{\lambda}_{jj}$ and ε

- New margins affect structural interpretation of ε
 - ...and composition of gains from trade (GT)...
 - ... but size of GT is the same.

Gains from Trade Revisited

- Proposition 1 is an *ex-post* result... a simple *ex-ante* result:

- **Corollary 1**: Suppose that R1-R3 hold. Then
 \[\hat{W}_j^A = \lambda_{jj}^{-1/\varepsilon} . \]

- A stronger ex-ante result for *variable trade costs* under R1-R3':

- **Proposition 2**: Suppose that R1-R3' hold. Then
 \[\hat{W}_j = \hat{\lambda}_{jj}^{1/\varepsilon} \]

 where
 \[\hat{\lambda}_{jj} = \left[\sum_{i=1}^{n} \lambda_{ij} (\hat{w}_i \hat{\tau}_{ij})^{\varepsilon} \right]^{-1} , \]

 and
 \[\hat{w}_i = \sum_{j=1}^{n} \frac{\lambda_{ij} \hat{w}_j Y_j (\hat{w}_i \hat{\tau}_{ij})^{\varepsilon}}{Y_i \sum_{i'=1}^{n} \lambda_{i'j} (\hat{w}_{i'} \hat{\tau}_{i'j})^{\varepsilon}} . \]

- ε and $\{\lambda_{ij}\}$ are sufficient to predict \hat{W}_j (ex-ante) from $\hat{\tau}_{ij}$, $i \neq j$.

3.1 Departing from ACR’s (2012) Equivalence Result

- Other Gravity Models:
 - Multiple Sectors
 - Tradable Intermediate Goods
 - Multiple Factors
 - Variable Markups

- Beyond Gravity:
 - PF’s sufficient statistic approach
 - Revealed preference argument (Bernhofen and Brown 2005)
 - More data (Costinot and Donaldson 2011)

3.2 Multiple sectors, GT

- Nested CES: Upper level EoS ρ and lower level EoS ε_s

- Recall gains for Canada of 3.8%. Now gains can be much higher: $\rho = 1$ implies $GT = 17.4\%$

3.3 Tradable intermediates, GT

- Set $\rho = 1$, add tradable intermediates with Input-Output structure

- Labor shares are $1 - \alpha_{j,s}$ and input shares are $\alpha_{j,ks}$ ($\sum_k \alpha_{j,ks} = \alpha_{j,s}$)

<table>
<thead>
<tr>
<th></th>
<th>$% GT_{j}$</th>
<th>$% GT_{j}^{MS}$</th>
<th>$% GT_{j}^{ID}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>3.8</td>
<td>17.4</td>
<td>30.2</td>
</tr>
<tr>
<td>Denmark</td>
<td>5.8</td>
<td>30.2</td>
<td>41.4</td>
</tr>
<tr>
<td>France</td>
<td>3.0</td>
<td>9.4</td>
<td>17.2</td>
</tr>
<tr>
<td>Portugal</td>
<td>4.4</td>
<td>23.8</td>
<td>35.9</td>
</tr>
<tr>
<td>U.S.</td>
<td>1.8</td>
<td>4.4</td>
<td>8.3</td>
</tr>
</tbody>
</table>
3.4 Combination of micro and macro features
- In Krugman, free entry ⇒ scale effects associated with total sales
- In Melitz, additional scale effects associated with market size
- In both models, trade may affect entry and fixed costs
- All these effects do not play a role in the one sector model
- With multiple sectors and traded intermediates, these effects come back

3.5 Gains from Trade

<table>
<thead>
<tr>
<th>.........................</th>
<th>Canada</th>
<th>China</th>
<th>Germany</th>
<th>Romania</th>
<th>US</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate</td>
<td>3.8</td>
<td>0.8</td>
<td>4.5</td>
<td>4.5</td>
<td>1.8</td>
</tr>
<tr>
<td>MS, PC</td>
<td>17.4</td>
<td>4.0</td>
<td>12.7</td>
<td>17.7</td>
<td>4.4</td>
</tr>
<tr>
<td>MS, MC</td>
<td>15.3</td>
<td>4.0</td>
<td>17.6</td>
<td>12.7</td>
<td>3.8</td>
</tr>
<tr>
<td>MS, IO, PC</td>
<td>29.5</td>
<td>11.2</td>
<td>22.5</td>
<td>29.2</td>
<td>8.0</td>
</tr>
<tr>
<td>MS, IO, MC (Krugman)</td>
<td>33.0</td>
<td>28.0</td>
<td>41.4</td>
<td>20.8</td>
<td>8.6</td>
</tr>
<tr>
<td>MS, IO, MC (Melitz)</td>
<td>39.8</td>
<td>77.9</td>
<td>52.9</td>
<td>20.7</td>
<td>10.3</td>
</tr>
</tbody>
</table>
3.6 From GT to trade policy evaluation

- Back to \(\{\lambda_{ij}, Y_j\} \), \(\varepsilon \) and \(\{\hat{r}_{ij}\} \) to get implied \(\hat{\lambda}_{jj} \)

- This is what CGE exercises do

- Contribution of recent quantitative work:
 - Link to theory—“mid-sized models”
 - Model consistent estimation
 - Quantify mechanisms

3.7 Main Lessons from CR (2013)

- Mechanisms that matter for GT:
 - Multiple sectors, tradable intermediates
 - Market structure matters, but in a more subtle way

- Trade policy in gravity models:
 - Good approximation to optimal tariff is \(1/\varepsilon \approx 20\% \) (related to Gros 87)
 - Large range for which countries gain from tariffs
 - Small effects of tariffs on other countries