Today’s Plan

1. The Simplest Gravity Model: Armington
1. The Simplest Gravity Model: Armington
The Armington Model

Image courtesy of rdpeyton on flickr. CC NC-BY-SA
The Armington Model: Equilibrium

- Labor endowments
 \[L_i \text{ for } i = 1, \ldots, n \]

- CES utility \(\Rightarrow\) CES price index
 \[P_j^{1-\sigma} = \sum_{i=1}^{n} (w_i \tau_{ij})^{1-\sigma} \]

- Bilateral trade flows follow gravity equation:
 \[X_{ij} = \frac{(w_i \tau_{ij})^{1-\sigma}}{\sum_{l=1}^{n} (w_l \tau_{lj})^{1-\sigma}} w_j L_j \]

- In what follows \(\varepsilon \equiv -\frac{d \ln X_{ij}}{d \ln \tau_{ij}} = \sigma - 1 \) denotes the trade elasticity

- Trade balance
 \[\sum_{i} X_{ji} = w_j L_j \]
The Armington Model: Welfare Analysis

- **Question:**
 Consider a foreign shock: $L_i \rightarrow L'_i$ for $i \neq j$ and $\tau_{ij} \rightarrow \tau'_{ij}$ for $i \neq j$. How do foreign shocks affect real consumption, $C_j \equiv w_j / P_j$?

- Shephard’s Lemma implies

 $$d \ln C_j = d \ln w_j - d \ln P_j = - \sum_{i=1}^{n} \lambda_{ij} \left(d \ln c_{ij} - d \ln c_{jj} \right)$$

 with $c_{ij} \equiv w_i \tau_{ij}$ and $\lambda_{ij} \equiv X_{ij} / w_j L_j$.

- Gravity implies

 $$d \ln \lambda_{ij} - d \ln \lambda_{jj} = -\varepsilon \left(d \ln c_{ij} - d \ln c_{jj} \right).$$
Combining these two equations yields

\[d \ln C_j = \sum_{i=1}^{n} \lambda_{ij} \left(d \ln \lambda_{ij} - d \ln \lambda_{jj} \right) \frac{1}{\varepsilon}. \]

Noting that \(\sum_i \lambda_{ij} = 1 \implies \sum_i \lambda_{ij} d \ln \lambda_{ij} = 0 \) then

\[d \ln C_j = -\frac{d \ln \lambda_{jj}}{\varepsilon}. \]

Integrating the previous expression yields \((x' = x'/x) \)

\[\hat{C}_j = \hat{\lambda}_{jj}^{-1/\varepsilon}. \]
The Armington Model: Welfare Analysis

- In general, predicting $\hat{\lambda}_{jj}$ requires (computer) work
 - We can use exact hat algebra as in DEK (Lecture #3)
 - Gravity equation + data $\{\lambda_{ij}, Y_j\}$, and ε
- But predicting how bad would it be to shut down trade is easy...
 - In autarky, $\lambda_{jj} = 1$. So

\[
C_j^A / C_j = \lambda_{jj}^{1/(\sigma-1)}
\]

- Thus gains from trade can be computed as

\[
GT_j \equiv 1 - C_j^A / C_j = 1 - \lambda_{jj}^{1/\varepsilon}
\]
The Armington Model: Gains from Trade

- Suppose that we have estimated trade elasticity using gravity equation
 - Central estimate in the literature is $\varepsilon = 5$
- We can then estimate gains from trade:

<table>
<thead>
<tr>
<th></th>
<th>λ_{jj}</th>
<th>% GT_j</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>0.82</td>
<td>3.8</td>
</tr>
<tr>
<td>Denmark</td>
<td>0.74</td>
<td>5.8</td>
</tr>
<tr>
<td>France</td>
<td>0.86</td>
<td>3.0</td>
</tr>
<tr>
<td>Portugal</td>
<td>0.80</td>
<td>4.4</td>
</tr>
<tr>
<td>Slovakia</td>
<td>0.66</td>
<td>7.6</td>
</tr>
<tr>
<td>U.S.</td>
<td>0.91</td>
<td>1.8</td>
</tr>
</tbody>
</table>
New Trade Models

Micro-level data have lead to **new questions** in international trade:
- How many firms export?
- How large are exporters?
- How many products do they export?

New models highlight **new margins** of adjustment:
- From inter-industry to intra-industry to intra-firm reallocations

Old question:
- How large are the gains from trade (GT)?

ACR’s question:
- How do new trade models affect the magnitude of GT?
ACR’s Main Equivalence Result

- ACR focus on gravity models
 - PC: Armington and Eaton & Kortum ’02
 - MC: Krugman ’80 and many variations of Melitz ’03
- Within that class, welfare changes are \((\hat{x} = x'/x)\)
 \[\hat{C} = \hat{\lambda}^{1/\varepsilon} \]

- **Two sufficient statistics** for welfare analysis are:
 - Share of domestic expenditure, \(\lambda\);
 - Trade elasticity, \(\varepsilon\)
- **Two views** on ACR’s result:
 - Optimistic: welfare predictions of Armington model are more robust than you thought
 - Pessimistic: within that class of models, micro-level data do not matter
Primitive Assumptions

Preferences and Endowments

- **CES utility**
 - Consumer price index,

 \[P_i^{1-\sigma} = \int_{\omega \in \Omega} p_i(\omega)^{1-\sigma} d\omega, \]

- **One factor of production:** labor
 - \(L_i \equiv \) labor endowment in country \(i \)
 - \(w_i \equiv \) wage in country \(i \)
Linear cost function:

\[C_{ij}(\omega, t, q) = q w_i \tau_{ij} \alpha_{ij}(\omega) t^{\frac{1}{1-\sigma}} + w_i^{1-\beta} w_j^\beta \zeta_{ij} \phi_{ij}(\omega) m_{ij}(t), \]

- \(q \): quantity,
- \(\tau_{ij} \): iceberg transportation cost,
- \(\alpha_{ij}(\omega) \): good-specific heterogeneity in variable costs,
- \(\zeta_{ij} \): fixed cost parameter,
- \(\phi_{ij}(\omega) \): good-specific heterogeneity in fixed costs.
Linear cost function:

\[C_{ij} (\omega, t, q) = q \omega_i \tau_{ij} \alpha_{ij} (\omega) t^{\frac{1}{1-\sigma}} + w_{ij}^{1-\beta} \xi_{ij} \phi_{ij} (\omega) m_{ij} (t) \]

\(m_{ij} (t) \): cost for endogenous destination specific technology choice, \(t \),

\[t \in [t, \bar{t}] , \ m'_{ij} > 0 , \ m''_{ij} \geq 0 \]
Primitive Assumptions

Technology

- **Linear cost function:**

\[C_{ij}(\omega, t, q) = qw_i \tau_{ij} \alpha_{ij}(\omega) t^{1-\sigma} + w_i^{1-\beta} w_j^\beta \xi_{ij} \phi_{ij}(\omega) m_{ij}(t) \]

- **Heterogeneity across goods**

\[G_j(\alpha_1, ..., \alpha_n, \phi_1, ..., \phi_n) \equiv \{ \omega \in \Omega | \alpha_{ij}(\omega) \leq \alpha_i, \phi_{ij}(\omega) \leq \phi_i, \forall i \} \]
Primitive Assumptions

Market Structure

- **Perfect competition**
 - Firms can produce any good.
 - No fixed exporting costs.

- **Monopolistic competition**
 - Either firms in i can pay $w_i F_i$ for monopoly power over a random good.
 - Or exogenous measure of firms, $\overline{N}_i < \overline{N}$, receive monopoly power.

- Let N_i be the measure of goods that can be produced in i
 - Perfect competition: $N_i = \overline{N}$
 - Monopolistic competition: $N_i < \overline{N}$
Macro-Level Restrictions
Trade is Balanced

- Bilateral trade flows are
 \[X_{ij} = \int_{\omega \in \Omega_{ij} \subset \Omega} x_{ij}(\omega) \, d\omega \]

- **R1 For any country** \(j \),
 \[\sum_{i \neq j} X_{ij} = \sum_{i \neq j} X_{ji} \]

 - Trivial if perfect competition or \(\beta = 0 \).
 - Non trivial if \(\beta > 0 \).
Macro-Level Restrictions
Profit Share is Constant

- **R2** For any country j,

\[\frac{\Pi_j}{\left(\sum_{i=1}^{n} X_{ji} \right)} \text{ is constant} \]

where Π_j : aggregate profits gross of entry costs, w_jF_j, (if any)

- Trivial under perfect competition.
- Direct from Dixit-Stiglitz preferences in Krugman (1980).
- Non-trivial in more general environments.
Macro-Level Restriction

CES Import Demand System

- **Import demand system**

 \[(w, N, \tau) \rightarrow X]\n
- **R3**

 \[\varepsilon_{ij}' \equiv \frac{\partial \ln (X_{ij} / X_{jj})}{\partial \ln \tau_{i'j}} = \begin{cases}
 \varepsilon < 0 & i = i' \neq j \\
 0 & \text{otherwise}
 \end{cases}\]

- **Note:** symmetry and separability.
The trade elasticity ε is an upper-level elasticity: it combines

- $x_{ij}(\omega)$ (intensive margin)
- Ω_{ij} (extensive margin).

R3 \implies complete specialization.

R1-R3 are not necessarily independent

- If $\beta = 0$ then R3 \implies R2.
Macro-Level Restriction
Strong CES Import Demand System (AKA Gravity)

- **R3’** The IDS satisfies

\[
X_{ij} = \frac{\chi_{ij} \cdot M_i \cdot (w_i \tau_{ij})^\varepsilon \cdot Y_j}{\sum_{i'=1}^{n} \chi_{i'j} \cdot M_{i'} \cdot (w_{i'} \tau_{i'j})^\varepsilon}
\]

where \(\chi_{ij}\) is independent of \((w, M, \tau)\).

- Same restriction on \(\varepsilon_{ij}'\) as R3 but, but additional structural relationships
Welfare results

- State of the world economy:
 \[Z \equiv (L, \tau, \xi) \]

- Foreign shocks: a change from \(Z \) to \(Z' \) with no domestic change.
Equivalence (I)

- **Proposition 1:** *Suppose that R1-R3 hold. Then*

 \[\hat{W}_j = \hat{\lambda}_{jj}^{1/\varepsilon}. \]

- Implication: 2 sufficient statistics for welfare analysis \(\hat{\lambda}_{jj} \) and \(\varepsilon \)

- New margins affect structural interpretation of \(\varepsilon \)
 - ...and composition of gains from trade (GT)...
 - ... but size of GT is the same.
Proposition 1 is an *ex-post* result... a simple *ex-ante* result:

Corollary 1: Suppose that R1-R3 hold. Then

\[\hat{W}_j^A = \lambda_{jj}^{-1/\varepsilon}. \]
A stronger ex-ante result for **variable trade costs** under R1-R3':

Proposition 2: Suppose that R1-R3' hold. Then

\[
\hat{W}_j = \hat{\lambda}_{jj}^{1/\varepsilon}
\]

where

\[
\hat{\lambda}_{jj} = \left[\sum_{i=1}^{n} \lambda_{ij} \left(\hat{w}_i \hat{\tau}_{ij} \right)^\varepsilon \right]^{-1},
\]

and

\[
\hat{w}_i = \sum_{j=1}^{n} \lambda_{ij} \hat{w}_j Y_j \left(\hat{w}_i \hat{\tau}_{ij} \right)^\varepsilon
\]

\(\varepsilon\) and \(\{\lambda_{ij}\}\) are sufficient to predict \(W_j\) (ex-ante) from \(\hat{\tau}_{ij}, i = j\).
Taking Stock

ACR consider models featuring:

- (i) Dixit-Stiglitz preferences;
- (ii) one factor of production;
- (iii) linear cost functions; and
- (iv) perfect or monopolistic competition;

with three macro-level restrictions:

- (i) trade is balanced;
- (ii) aggregate profits are a constant share of aggregate revenues; and
- (iii) a CES import demand system.

Equivalence for ex-post welfare changes and GT

- under R3’ equivalence carries to ex-ante welfare changes
3. Beyond ACR’s (2012) Equivalence Result:
 CR (2013)
Departing from ACR’s (2012) Equivalence Result

Other Gravity Models:
- Multiple Sectors
- Tradable Intermediate Goods
- Multiple Factors
- Variable Markups

Beyond Gravity:
- PF’s sufficient statistic approach
- Revealed preference argument (Bernhofen and Brown 2005)
- More data (Costinot and Donaldson 2011)
1. Add multiple sectors

2. Add traded intermediates
Multiple sectors, GT

- Nested CES: Upper level EoS ρ and lower level EoS ε_s

- Recall gains for Canada of 3.8%. Now gains can be much higher: $\rho = 1$ implies $GT = 17.4\%$
- Set $\rho = 1$, add tradable intermediates with Input-Output structure
- Labor shares are $1 - \alpha_{j,s}$ and input shares are $\alpha_{j,ks}$ ($\sum_k \alpha_{j,ks} = \alpha_{j,s}$)
<table>
<thead>
<tr>
<th></th>
<th>% GT_j</th>
<th>% GT_j^{MS}</th>
<th>% GT_j^{IO}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>3.8</td>
<td>17.4</td>
<td>30.2</td>
</tr>
<tr>
<td>Denmark</td>
<td>5.8</td>
<td>30.2</td>
<td>41.4</td>
</tr>
<tr>
<td>France</td>
<td>3.0</td>
<td>9.4</td>
<td>17.2</td>
</tr>
<tr>
<td>Portugal</td>
<td>4.4</td>
<td>23.8</td>
<td>35.9</td>
</tr>
<tr>
<td>U.S.</td>
<td>1.8</td>
<td>4.4</td>
<td>8.3</td>
</tr>
</tbody>
</table>
Combination of micro and macro features

- In Krugman, free entry \Rightarrow scale effects associated with total sales
- In Melitz, additional scale effects associated with market size
- In both models, trade may affect entry and fixed costs
- All these effects do not play a role in the one sector model
- With multiple sectors and traded intermediates, these effects come back
Gains from Trade

<table>
<thead>
<tr>
<th></th>
<th>Canada</th>
<th>China</th>
<th>Germany</th>
<th>Romania</th>
<th>US</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate</td>
<td>3.8</td>
<td>0.8</td>
<td>4.5</td>
<td>4.5</td>
<td>1.8</td>
</tr>
</tbody>
</table>
Gains from Trade

<table>
<thead>
<tr>
<th></th>
<th>Canada</th>
<th>China</th>
<th>Germany</th>
<th>Romania</th>
<th>US</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate</td>
<td>3.8</td>
<td>0.8</td>
<td>4.5</td>
<td>4.5</td>
<td>1.8</td>
</tr>
<tr>
<td>MS, PC</td>
<td>17.4</td>
<td>4.0</td>
<td>12.7</td>
<td>17.7</td>
<td>4.4</td>
</tr>
</tbody>
</table>
Gains from Trade

<table>
<thead>
<tr>
<th></th>
<th>Canada</th>
<th>China</th>
<th>Germany</th>
<th>Romania</th>
<th>US</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate</td>
<td>3.8</td>
<td>0.8</td>
<td>4.5</td>
<td>4.5</td>
<td>1.8</td>
</tr>
<tr>
<td>MS, PC</td>
<td>17.4</td>
<td>4.0</td>
<td>12.7</td>
<td>17.7</td>
<td>4.4</td>
</tr>
<tr>
<td>MS, MC</td>
<td>15.3</td>
<td>4.0</td>
<td>17.6</td>
<td>12.7</td>
<td>3.8</td>
</tr>
</tbody>
</table>
Gains from Trade

<table>
<thead>
<tr>
<th></th>
<th>Canada</th>
<th>China</th>
<th>Germany</th>
<th>Romania</th>
<th>US</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate</td>
<td>3.8</td>
<td>0.8</td>
<td>4.5</td>
<td>4.5</td>
<td>1.8</td>
</tr>
<tr>
<td>MS, PC</td>
<td>17.4</td>
<td>4.0</td>
<td>12.7</td>
<td>17.7</td>
<td>4.4</td>
</tr>
<tr>
<td>MS, MC</td>
<td>15.3</td>
<td>4.0</td>
<td>17.6</td>
<td>12.7</td>
<td>3.8</td>
</tr>
<tr>
<td>MS, IO, PC</td>
<td>29.5</td>
<td>11.2</td>
<td>22.5</td>
<td>29.2</td>
<td>8.0</td>
</tr>
</tbody>
</table>
Gains from Trade

<table>
<thead>
<tr>
<th>..</th>
<th>Canada</th>
<th>China</th>
<th>Germany</th>
<th>Romania</th>
<th>US</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate</td>
<td>3.8</td>
<td>0.8</td>
<td>4.5</td>
<td>4.5</td>
<td>1.8</td>
</tr>
<tr>
<td>MS, PC</td>
<td>17.4</td>
<td>4.0</td>
<td>12.7</td>
<td>17.7</td>
<td>4.4</td>
</tr>
<tr>
<td>MS, MC</td>
<td>15.3</td>
<td>4.0</td>
<td>17.6</td>
<td>12.7</td>
<td>3.8</td>
</tr>
<tr>
<td>MS, IO, PC</td>
<td>29.5</td>
<td>11.2</td>
<td>22.5</td>
<td>29.2</td>
<td>8.0</td>
</tr>
<tr>
<td>MS, IO, MC (Krugman)</td>
<td>33.0</td>
<td>28.0</td>
<td>41.4</td>
<td>20.8</td>
<td>8.6</td>
</tr>
</tbody>
</table>
Gains from Trade

<table>
<thead>
<tr>
<th></th>
<th>Canada</th>
<th>China</th>
<th>Germany</th>
<th>Romania</th>
<th>US</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate</td>
<td>3.8</td>
<td>0.8</td>
<td>4.5</td>
<td>4.5</td>
<td>1.8</td>
</tr>
<tr>
<td>MS, PC</td>
<td>17.4</td>
<td>4.0</td>
<td>12.7</td>
<td>17.7</td>
<td>4.4</td>
</tr>
<tr>
<td>MS, MC</td>
<td>15.3</td>
<td>4.0</td>
<td>17.6</td>
<td>12.7</td>
<td>3.8</td>
</tr>
<tr>
<td>MS, IO, PC</td>
<td>29.5</td>
<td>11.2</td>
<td>22.5</td>
<td>29.2</td>
<td>8.0</td>
</tr>
<tr>
<td>MS, IO, MC (Krugman)</td>
<td>33.0</td>
<td>28.0</td>
<td>41.4</td>
<td>20.8</td>
<td>8.6</td>
</tr>
<tr>
<td>MS, IO, MC (Melitz)</td>
<td>39.8</td>
<td>77.9</td>
<td>52.9</td>
<td>20.7</td>
<td>10.3</td>
</tr>
</tbody>
</table>
From GT to trade policy evaluation

- Back to $\{\lambda_{ij}, Y_j\}$, ε and $\{\hat{\tau}_{ij}\}$ to get implied $\hat{\lambda}_{jj}$

- This is what CGE exercises do

- Contribution of recent quantitative work:
 - Link to theory—“mid-sized models”
 - Model consistent estimation
 - Quantify mechanisms
Main Lessons from CR (2013)

- **Mechanisms that matter for GT:**
 - Multiple sectors, tradable intermediates
 - Market structure matters, but in a more subtle way

- **Trade policy in gravity models:**
 - Good approximation to optimal tariff is $1/\epsilon \approx 20\%$ (related to Gros 87)
 - Large range for which countries gain from tariffs
 - Small effects of tariffs on other countries
For Future Research

- Treatment of capital goods
- Modeling of trade imbalances
- Fit of model
- Relation with micro studies
- Relation with other non-gravity approaches