Putting Ricardo to Work

- Ricardian model has long been perceived as a useful pedagogic tool, with little empirical content:
 - Great to explain undergrads why there are gains from trade
 - But grad students should study richer models (Feenstra’s graduate textbook has a total of 3 pages on the Ricardian model!)
- Eaton and Kortum (2002) have lead to “Ricardian revival”
 - Same basic idea as in Wilson (1980): Who cares about the pattern of trade for counterfactual analysis?
 - But more structure: Small number of parameters, so well-suited for quantitative work
- **Goals of this lecture:**
 1. Present EK model
 2. Discuss estimation of its key parameter
 3. Introduce tools for welfare and counterfactual analysis
Basic Assumptions

- N countries, $i = 1, \ldots, N$
- Continuum of goods $u \in [0, 1]$
- Preferences are CES with elasticity of substitution σ:
 \[
 U_i = \left(\int_0^1 q_i(u)^{(\sigma-1)/\sigma} \, du \right)^{\sigma/(\sigma-1)}
 \]
- One factor of production (labor)
- There may also be intermediate goods (more on that later)
- $c_i \equiv$ unit cost of the “common input” used in production of all goods
 - Without intermediate goods, c_i is equal to wage w_i in country i
Basic Assumptions (Cont.)

- Constant returns to scale:
 - $Z_i(u)$ denotes productivity of (any) firm producing u in country i
 - $Z_i(u)$ is drawn independently (across goods and countries) from a Fréchet distribution:
 \[
 \Pr(Z_i \leq z) = F_i(z) = e^{-T_i z^{-\theta}},
 \]
 with $\theta > \sigma - 1$ (important restriction, see below)
 - Since goods are symmetric except for productivity, we can forget about index u and keep track of goods through $Z \equiv (Z_1, ..., Z_N)$.

- Trade is subject to iceberg costs $d_{ni} \geq 1$
 - d_{ni} units need to be shipped from i so that 1 unit makes it to n

- All markets are perfectly competitive
Let $P_{ni}(Z) \equiv c_id_{ni}/Z_i$ be the unit cost at which country i can serve a good Z to country n and let $G_{ni}(p) \equiv \Pr(P_{ni}(Z) \leq p)$. Then:

$$G_{ni}(p) = \Pr(Z_i \geq c_id_{ni}/p) = 1 - F_i(c_id_{ni}/p)$$

Let $P_n(Z) \equiv \min\{P_{n1}(Z), ..., P_{nN}(Z)\}$ and let $G_n(p) \equiv \Pr(P_n(Z) \leq p)$ be the price distribution in country n. Then:

$$G_n(p) = 1 - \exp[-\Phi_n p^\theta]$$

where

$$\Phi_n \equiv \sum_{i=1}^{N} T_i(c_id_{ni})^{-\theta}$$
To show this, note that (suppressing notation \(Z \) from here onwards)

\[
\Pr(P_n \leq p) = 1 - \Pi_i \Pr(P_{ni} \geq p) \\
= 1 - \Pi_i [1 - G_{ni}(p)]
\]

Using

\[
G_{ni}(p) = 1 - F_i(c_id_{ni}/p)
\]

then

\[
1 - \Pi_i [1 - G_{ni}(p)] = 1 - \Pi_i F_i(c_id_{ni}/p) \\
= 1 - \Pi_i e^{-T_i(c_id_{ni})^\theta} p^\theta
\]

\[
= 1 - e^{-\Phi np^\theta}
\]
Consider a particular good. Country n buys the good from country i if $i = \arg \min \{p_{n1}, \ldots, p_{nN}\}$. The probability of this event is simply country i's contribution to country n's price parameter Φ_n,

$$\pi_{ni} = \frac{T_i(c_i d_{ni})^{-\theta}}{\Phi_n}$$

To show this, note that

$$\pi_{ni} = \Pr \left(P_{ni} \leq \min_{s \neq i} P_{ns} \right)$$

If $P_{ni} = p$, then the probability that country i is the least cost supplier to country n is equal to the probability that $P_{ns} \geq p$ for all $s \neq i$.
The previous probability is equal to

\[\prod_{s \neq i} \Pr(P_{ns} \geq p) = \prod_{s \neq i} [1 - G_{ns}(p)] = e^{-\Phi_{n}^{-i}p^\theta} \]

where

\[\Phi_{n}^{-i} = \sum_{s \neq i} T_i (c_i d_{ni})^{-\theta} \]

Now we integrate over this for all possible \(p \)'s times the density \(dG_{ni}(p) \) to obtain

\[
\int_{0}^{\infty} e^{-\Phi_{n}^{-i}p^\theta} T_i (c_i d_{ni})^{-\theta} \theta p^{\theta-1} e^{-T_i(c_i d_{ni})^{-\theta} p^\theta} dp
\]

\[
= \left(\frac{T_i (c_i d_{ni})^{-\theta}}{\Phi_{n}} \right) \int_{0}^{\infty} \theta \Phi_{n} e^{-\Phi_{n}p^\theta} p^{\theta-1} dp
\]

\[
= \pi_{ni} \int_{0}^{\infty} dG_{n}(p) dp = \pi_{ni}
\]
The price of a good that country \(n \) actually buys from any country \(i \) also has the distribution \(G_n(p) \).

To show this, note that if country \(n \) buys a good from country \(i \) it means that \(i \) is the least cost supplier. If the price at which country \(i \) sells this good in country \(n \) is \(q \), then the probability that \(i \) is the least cost supplier is

\[
\Pi_{s \neq i} \Pr(P_{ni} \geq q) = \Pi_{s \neq i} [1 - G_{ns}(q)] = e^{-\Phi_n^{-i} q^\theta}
\]

The joint probability that country \(i \) has a unit cost \(q \) of delivering the good to country \(n \) and is the least cost supplier of that good in country \(n \) is then

\[
e^{-\Phi_n^{-i} q^\theta} dG_{ni}(q)
\]
Integrating this probability $e^{-\Phi_n^{-1} q^\theta} dG_{ni}(q)$ over all prices $q \leq p$ and using $G_{ni}(q) = 1 - e^{-T_i(c_i d_{ni})^{-\theta} p^\theta}$ then

$$
\int_0^p e^{-\Phi_n^{-1} q^\theta} dG_{ni}(q) = \int_0^p e^{-\Phi_n^{-1} q^\theta} \frac{T_i(c_i d_{ni})^{-\theta} q^\theta - 1}{\Phi_n} e^{-T_i(c_i d_{ni})^{-\theta} p^\theta} dq
$$

$$
= \left(\frac{T_i(c_i d_{ni})^{-\theta}}{\Phi_n}\right) \int_0^p e^{-\Phi_n q^\theta} \theta \Phi_n q^{\theta - 1} dq
$$

$$
= \pi_{ni} G_n(p)
$$

Given that $\pi_{ni} \equiv$ probability that for any particular good country i is the least cost supplier in n, then conditional distribution of the price charged by i in n for the goods that i actually sells in n is

$$
\frac{1}{\pi_{ni}} \int_0^p e^{-\Phi_n^{-1} q^\theta} dG_{ni}(q) = G_n(p)
$$
In Eaton and Kortum (2002):

1. All the adjustment is at the extensive margin: countries that are more distant, have higher costs, or lower T's, simply sell a smaller range of goods, but the average price charged is the same.

2. The share of spending by country n on goods from country i is the same as the probability π_{ni} calculated above.

We will establish a similar property in models of monopolistic competition with Pareto distributions of firm-level productivity.
The exact price index for a CES utility with elasticity of substitution \(\sigma < 1 + \theta \), defined as

\[
p_n = \left(\int_0^1 p_n(u)^{1-\sigma} \, du \right)^{1/(1-\sigma)},
\]

is given by

\[
p_n = \gamma \Phi_n^{-1/\theta}
\]

where

\[
\gamma = \left[\Gamma \left(\frac{1-\sigma}{\theta} + 1 \right) \right]^{1/(1-\sigma)}
\]

where \(\Gamma \) is the Gamma function, i.e. \(\Gamma(a) \equiv \int_0^\infty x^{a-1} e^{-x} \, dx \).
To show this, note that
\[
p_n^{1-\sigma} = \int_0^1 p_n(u)^{1-\sigma} du = \int_0^\infty p_1^{1-\sigma} dG_n(p) = \int_0^\infty p_1^{1-\sigma} \Phi_n \theta p^{\theta-1} e^{-\Phi_n p^\theta} dp.
\]

Defining \(x = \Phi_n p^\theta\), then \(dx = \Phi_n \theta p^{\theta-1}\), \(p_1^{1-\sigma} = (x/\Phi_n)^{(1-\sigma)/\theta}\), and
\[
p_n^{1-\sigma} = \int_0^\infty \left(\frac{x}{\Phi_n}\right)^{(1-\sigma)/\theta} e^{-x} dx
= \Phi_n^{-(1-\sigma)/\theta} \int_0^\infty x^{(1-\sigma)/\theta} e^{-x} dx
= \Phi_n^{-(1-\sigma)/\theta} \Gamma \left(\frac{1-\sigma}{\theta} + 1\right)
\]

This implies \(p_n = \gamma \Phi_n^{-1/\theta}\) with \(\frac{1-\sigma}{\theta} + 1 > 0\) or \(\sigma - 1 < \theta\) for gamma function to be well defined.
Equilibrium

- Let X_{ni} be total spending in country n on goods from country i
- Let $X_n \equiv \sum_i X_{ni}$ be country n’s total spending
- We know that $X_{ni}/X_n = \pi_{ni}$, so

$$X_{ni} = \frac{T_i (c_i d_{ni})^{-\theta}}{\Phi_n} X_n$$ \hfill (*)

- Suppose that there are no intermediate goods so that $c_i = w_i$.
- In equilibrium, total income in country i must be equal to total spending on goods from country i so

$$w_i L_i = \sum_n X_{ni}$$

- Trade balance further requires $X_n = w_n L_n$ so that

$$w_i L_i = \sum_n \frac{T_i (w_i d_{ni})^{-\theta}}{\sum_j T_j (w_j d_{nj})^{-\theta}} w_n L_n$$
This provides system of $N - 1$ independent equations (Walras’ Law) that can be solved for wages (w_1, \ldots, w_N) up to a choice of numeraire.

Everything is as if countries were exchanging labor.

- Frechet distributions imply that labor demands are iso-elastic.
- Armington model leads to similar eq. conditions under assumption that each country is exogenously specialized in a differentiated good.
- In the Armington model, the labor demand elasticity simply coincides with elasticity of substitution σ.

Under frictionless trade ($d_{ni} = 1$ for all n, i) previous system implies

$$w_i^{1+\theta} = \frac{T_i}{L_i} \frac{\sum_n w_n L_n}{\sum_j T_j w_j^{-\theta}}$$

and hence

$$\frac{w_i}{w_j} = \left(\frac{T_i / L_i}{T_j / L_j}\right)^{1/(1+\theta)}$$
The Gravity Equation

- Letting $Y_i = \sum_n X_{ni}$ be country i’s total sales, then

$$Y_i = \sum_n \frac{T_i (c_i d_{ni})^{-\theta} X_n}{\Phi_n} = T_i c_i^{-\theta} \Omega_i^{-\theta}$$

where

$$\Omega_i^{-\theta} \equiv \sum_n \frac{d_{ni}^{-\theta} X_n}{\Phi_n}$$

- Solving $T_i c_i^{-\theta}$ from $Y_i = T_i c_i^{-\theta} \Omega_i^{-\theta}$ and plugging into (*) we get

$$X_{ni} = \frac{X_n Y_i d_{ni}^{-\theta} \Omega_i^{\theta}}{\Phi_n}$$

- Using $p_n = \gamma \Phi_n^{-1/\theta}$ we can then get

$$X_{ni} = \gamma^{-\theta} X_n Y_i d_{ni}^{-\theta} (p_n \Omega_i)^{\theta}$$

- This is the **Gravity Equation**, with bilateral resistance d_{ni} and multilateral resistance terms p_n (inward) and Ω_i (outward).
From (*) we also get that country i’s share in country n’s expenditures normalized by its own share is

$$S_{ni} \equiv \frac{X_{ni}/X_n}{X_{ii}/X_i} = \frac{\Phi_i d_{ni}^{-\theta}}{\Phi_n} = \left(\frac{p_i d_{ni}}{p_n}\right)^{-\theta}$$

This shows the importance of trade costs and comparative advantage in determining trade volumes. Note that if there are no trade barriers (i.e., frictionless trade), then $S_{ni} = 1$.

Letting $B_{ni} \equiv \left(\frac{X_{ni}}{X_{ii}} \cdot \frac{X_{in}}{X_{nn}}\right)^{1/2}$ then

$$B_{ni} = (S_{ni} S_{in})^{1/2} = \left(d_{ni}^{-\theta} d_{in}^{-\theta}\right)^{1/2}$$

Under symmetric trade costs (i.e., $d_{ni} = d_{in}$) then $B_{ni}^{-1/\theta} = d_{ni}$ can be used as a measure of trade costs.
We can also see how B_{ni} varies with physical distance between n and i:

![Graph showing the relationship between normalized import share and distance (in miles) between countries n and i. The graph indicates a negative correlation, with normalized import share decreasing as distance increases.](Image by MIT OpenCourseWare.)
How to Estimate the Trade Elasticity?

- As we will see the trade elasticity θ is the key structural parameter for welfare and counterfactual analysis in EK model.
- Cannot estimate θ directly from $B_{ni} = d_{ni}^{-\theta}$ because distance is not an empirical counterpart of d_{ni} in the model.
 - Negative relationship in Figure 1 could come from strong effect of distance on d_{ni} or from mild CA (high θ).
- Consider again the equation

$$S_{ni} = \left(\frac{p_i d_{ni}}{p_n}\right)^{-\theta}$$

- If we had data on d_{ni}, we could run a regression of $\ln S_{ni}$ on $\ln d_{ni}$ with importer and exporter dummies to recover θ.
 - But how do we get d_{ni}?
EK use price data to measure \(p_i d_{ni} / p_n \):

- They use retail prices in 19 OECD countries for 50 manufactured products from the UNICP 1990 benchmark study.
- They interpret these data as a sample of the prices \(p_i(j) \) of individual goods in the model.
- They note that for goods that \(n \) imports from \(i \) we should have \(p_n(j) / p_i(j) = d_{ni} \), whereas goods that \(n \) doesn’t import from \(i \) can have \(p_n(j) / p_i(j) \leq d_{ni} \).
- Since every country in the sample does import manufactured goods from every other, then \(\max_j \{ p_n(j) / p_i(j) \} \) should be equal to \(d_{ni} \).
- To deal with measurement error, they actually use the second highest \(p_n(j) / p_i(j) \) as a measure of \(d_{ni} \).
Let $r_{ni}(j) \equiv \ln p_n(j) - \ln p_i(j)$. They calculate $\ln(p_n/p_i)$ as the mean across j of $r_{ni}(j)$. Then they measure $\ln(p_i d_{ni}/p_n)$ by

$$D_{ni} = \max 2_j \left\{ r_{ni}(j) \right\} / \sum_j r_{ni}(j) / 50$$

Given $S_{ni} = \left(p_i d_{ni} / p_n \right)^{-\theta}$ they estimate θ from $\ln(S_{ni}) = -\theta D_{ni}$.

Method of moments: $\theta = 8.28$. OLS with zero intercept: $\theta = 8.03$.

© Econometric Society. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.
Simonovska and Waugh (2011) argue that EK’s procedure suffers from upward bias:
- Since EK are only considering 50 goods, maximum price gap may still be strictly lower than trade cost
- If we underestimate trade costs, we overestimate trade elasticity
- Simulation based method of moments leads to a θ closer to 4.

An alternative approach is to use tariffs (Caliendo and Parro, 2011). If $d_{ni} = t_{ni} \tau_{ni}$ where t_{ni} is one plus the ad-valorem tariff (they actually do this for each 2 digit industry) and τ_{ni} is assumed to be symmetric, then

$$\frac{X_{ni}X_{ij}X_{jn}}{X_{nj}X_{ji}X_{in}} = \left(\frac{d_{ni}d_{ij}d_{jn}}{d_{nj}d_{ji}d_{in}} \right)^{-\theta} = \left(\frac{t_{ni}t_{ij}t_{jn}}{t_{nj}t_{ji}t_{in}} \right)^{-\theta}$$

They can then run an OLS regression and recover θ. Their preferred specification leads to an estimate of 8.22
Consider again the case where \(c_i = w_i \)

From (*), we know that

\[
\pi_{nn} = \frac{X_{nn}}{X_n} = \frac{T_n w_n^{-\theta}}{\Phi_n}
\]

We also know that \(p_n = \gamma \Phi_n^{-1/\theta} \), so

\[
\omega_n \equiv w_n / p_n = \gamma^{-1} T_n^{1/\theta} \pi_{nn}^{-1/\theta}.
\]

Under autarky we have \(\omega_n^A = \gamma^{-1} T_n^{1/\theta} \), hence the gains from trade are given by

\[
GT_n \equiv \omega_n / \omega_n^A = \pi_{nn}^{-1/\theta}
\]

Trade elasticity \(\theta \) and share of expenditure on domestic goods \(\pi_{nn} \) are sufficient statistics to compute GT.
A typical value for π_{nn} (manufacturing) is 0.7. With $\theta = 5$ this implies $GT_n = 0.7^{-1/5} = 1.074$ or 7.4% gains. Belgium has $\pi_{nn} = 0.2$, so its gains are $GT_n = 0.2^{-1/5} = 1.38$ or 38%.

One can also use the previous approach to measure the welfare gains associated with any foreign shock, not just moving to autarky:

$$\omega_n'/\omega_n = (\pi_{nn}'/\pi_{nn})^{-1/\theta}$$

For more general counterfactual scenarios, however, one needs to know both π_{nn}' and π_{nn}.
Adding an Input-Output Loop

- Imagine that intermediate goods are used to produce a composite good with a CES production function with elasticity $\sigma > 1$. This composite good can be either consumed or used to produce intermediate goods (input-output loop).

- Each intermediate good is produced from labor and the composite good with a Cobb-Douglas technology with labor share β. We can then write $c_i = w_i^\beta p_i^{1-\beta}$.
The analysis above implies
\[\pi_{nn} = \gamma^{-\theta} T_n \left(\frac{c_n}{p_n} \right)^{-\theta} \]

and hence
\[c_n = \gamma^{-1} T_n^{-1/\theta} \pi_{nn}^{-1/\theta} p_n \]

Using \(c_n = w_n^\beta p_n^{1-\beta} \) this implies
\[w_n^\beta p_n^{1-\beta} = \gamma^{-1} T_n^{-1/\theta} \pi_{nn}^{-1/\theta} p_n \]

so
\[w_n / p_n = \gamma^{-1/\beta} T_n^{-1/\theta \beta} \pi_{nn}^{-1/\theta \beta} \]

The gains from trade are now
\[\omega_n / \omega_n^A = \pi_{nn}^{-1/\theta \beta} \]

Standard value for \(\beta \) is 1/2 (Alvarez and Lucas, 2007). For \(\pi_{nn} = 0.7 \) and \(\theta = 5 \) this implies \(GT_n = 0.7^{-2/5} = 1.15 \) or 15% gains.
Adding Non-Tradables

- Assume now that the composite good cannot be consumed directly.
- Instead, it can either be used to produce intermediates (as above) or to produce a consumption good (together with labor).
- The production function for the consumption good is Cobb-Douglas with labor share α.
- This consumption good is assumed to be non-tradable.
The price index computed above is now \(p_{gn} \), but we care about
\(\omega_n \equiv w_n / p_{fn} \), where

\[p_{fn} = w_n \alpha p_{gn} \]

This implies that

\[\omega_n = \frac{w_n}{w_n \alpha p_{gn}} = (w_n / p_{gn})^{1-\alpha} \]

Thus, the gains from trade are now

\[\frac{\omega_n}{\omega_n^A} = \pi_{nn}^{-\eta} / \theta \]

where
\[\eta \equiv \frac{1 - \alpha}{\beta} \]

Alvarez and Lucas argue that \(\alpha = 0.75 \) (share of labor in services). Thus, for \(\pi_{nn} = 0.7 \), \(\theta = 5 \) and \(\beta = 0.5 \), this implies
\(GT_n = 0.7^{-1/10} = 1.036 \) or 3.6% gains
Go back to the simple EK model above ($\alpha = 0$, $\beta = 1$). We have

$$X_{ni} = \gamma^{-\theta} T_i(w_i d_{ni})^{-\theta} p_n^\theta X_n$$

$$p_n^{-\theta} = \gamma^{-\theta} \sum_{i=1}^{N} T_i(w_i d_{ni})^{-\theta}$$

$$\sum_{n} X_{ni} = w_i L_i$$

As we have already established, this leads to a system of non-linear equations to solve for wages,

$$w_i L_i = \sum_{n} \frac{T_i(w_i d_{ni})^{-\theta}}{\sum_{k} T_k (w_k d_{nk})^{-\theta}} w_n L_n.$$
Comparative statics (Dekle, Eaton and Kortum, 2008)

- Consider a shock to labor endowments, trade costs, or productivity. One could compute the original equilibrium, the new equilibrium and compute the changes in endogenous variables.

- But there is a simpler way that uses only information for observables in the initial equilibrium, trade shares and GDP; the trade elasticity, \(\theta \); and the exogenous shocks. First solve for changes in wages by solving

\[
\hat{w}_i \hat{L}_i Y_i = \sum_n \frac{\pi_{ni} \hat{T}_i (\hat{w}_i \hat{d}_{ni})^{-\theta}}{\sum_k \pi_{nk} \hat{T}_k (\hat{w}_k \hat{d}_{nk})^{-\theta}} \hat{w}_n \hat{L}_n Y_n
\]

and then get changes in trade shares from

\[
\hat{\pi}_{ni} = \frac{\hat{T}_i (\hat{w}_i \hat{d}_{ni})^{-\theta}}{\sum_k \pi_{nk} \hat{T}_k (\hat{w}_k \hat{d}_{nk})^{-\theta}}.
\]

- From here, one can compute welfare changes by using the formula above, namely \(\hat{\omega}_n = (\hat{\pi}_{nn})^{-1/\theta} \).
Comparative statics (Dekle, Eaton and Kortum, 2008)

To show this, note that trade shares are

$$\pi_{ni} = \frac{T_i (w_i d_{ni})^{-\theta}}{\sum_k T_k (w_k d_{nk})^{-\theta}} \quad \text{and} \quad \pi'_{ni} = \frac{T'_i (w'_i d'_{ni})^{-\theta}}{\sum_k T'_k (w'_k d'_{nk})^{-\theta}}.$$

Letting $\hat{x} \equiv x'/x$, then we have

$$\hat{\pi}_{ni} = \frac{\hat{T}_i (\hat{w}_i \hat{d}_{ni})^{-\theta}}{\sum_k \hat{T}_k (\hat{w}_k \hat{d}_{nk})^{-\theta} / \sum_j T_j (w_j d_{nj})^{-\theta}} = \frac{\hat{T}_i (\hat{w}_i \hat{d}_{ni})^{-\theta}}{\sum_k \hat{T}_k (\hat{w}_k \hat{d}_{nk})^{-\theta} \ T_k (w_k d_{nk})^{-\theta} / \sum_j T_j (w_j d_{nj})^{-\theta}} = \frac{\hat{T}_i (\hat{w}_i \hat{d}_{ni})^{-\theta}}{\sum_k \pi_{nk} \hat{T}_k (\hat{w}_k \hat{d}_{nk})^{-\theta}}.$$
On the other hand, for equilibrium we have

$$w'_i L'_i = \sum_n \pi'_n w'_n L'_n = \sum_n \hat{\pi}_n \pi_n w'_n L'_n$$

Letting $Y_n \equiv w_n L_n$ and using the result above for $\hat{\pi}_n$ we get

$$\hat{w}_i \hat{L}_i Y_i = \sum_n \frac{\pi_n \hat{T}_i (\hat{w}_i \hat{d}_{ni})^{-\theta}}{\sum_k \pi_{nk} \hat{T}_k (\hat{w}_k \hat{d}_{nk})^{-\theta}} \hat{w}_n \hat{L}_n Y_n$$

This forms a system of N equations in N unknowns, \hat{w}_i, from which we can get \hat{w}_i as a function of shocks and initial observables (establishing some numeraire). Here π_n and Y_i are data and we know \hat{d}_{ni}, \hat{T}_i, \hat{L}_i, as well as θ.

14.581 (Week 2) Ricardian Theory (I) Spring 2013 32 / 34
Comparative statics (Dekle, Eaton and Kortum, 2008)

- To compute the implications for welfare of a foreign shock, simply impose that $\hat{L}_n = \hat{T}_n = 1$, solve the system above to get \hat{w}_i and get the implied $\hat{\pi}_{nn}$ through

$$\hat{\pi}_{ni} = \frac{\hat{T}_i (\hat{w}_i \hat{d}_{ni})^{-\theta}}{\sum_k \pi_{nk} \hat{T}_k (\hat{w}_k \hat{d}_{nk})^{-\theta}}.$$

and use the formula to get

$$\hat{\omega}_n = \hat{\pi}_{nn}^{-1/\theta}.$$

- Of course, if it is not the case that $\hat{L}_n = \hat{T}_n = 1$, then one can still use this approach, since it is easy to show that in autarky one has $w_n / p_n = \gamma^{-1} T_n^{1/\theta}$, hence in general

$$\hat{\omega}_n = \left(\hat{T}_n\right)^{1/\theta} \hat{\pi}_{nn}^{-1/\theta}.$$
Extensions of EK

 - Bertrand competition ⇒ variable markups at the firm-level
 - Measured productivity varies across firms ⇒ one can use firm-level data to calibrate model

- **Multiple Sectors**: Costinot, Donaldson, and Komunjer (2012)
 - \(T^k_i \equiv \) fundamental productivity in country \(i \) and sector \(k \)
 - One can use EK’s machinery to study pattern of trade, not just volumes

- **Non-homothetic preferences**: Fieler (2011)
 - Rich and poor countries have different expenditure shares
 - Combined with differences in \(\theta^k \) across sectors \(k \), one can explain pattern of North-North, North-South, and South-South trade