A Life’s Identification Challenges

- The iconic empirical life-cycle labor supply function looks like this:
\[\ln h_{it} = \mu_i + (\rho \cdot r) + \ln w_{it} + u_{it} \] \hspace{1cm} (1)
where \(\frac{1}{2} \) and \(u_{it} \) is a “tacked-on” error

- We’re after \(\mu_i \), the ISE, but it’s not easily captured
 - Estimation of (1) isn’t shovel-ready: the control variable \(\mu_i \) isn’t found in the CPS. A function of the marginal utility of wealth, this variable is negatively correlated with wages, \(w_{it} \)
 - We have limited data on hourly wages; instead, we work with average hourly earnings, \(AHE_{it} = \frac{w_{it}}{h_{it}} \). So we’re naively regressing hours worked on (hours worked)\(^{-1}\). The results might not be pretty; rather, they’re pretty negative!

B Problems and Solutions

- Analysis of covariance (deviations from means) or differencing kills the unobserved fixed effect (whew!)

- These transformations also aggravate the bias from our poorly measured wage variable. The bias here is worse than classical attenuation bias: the fact that mismeasured hours appears on both sides of the equation of interest induces a powerful negative term known as “division bias”

- We might instead try grouping strategies, as in Angrist (1990, 1991). This approach potentially kills the measurement error as well as the fixed effect. I like that a lot!
C Division Bias Details

Suppose the labor supply equation of our heart’s desire is
\[
\ln h_{it}^* = \alpha + \ln w_{it}^* + u_{it} \tag{2}
\]

For the purposes of this discussion, we’ll start by assuming we’d be happy to estimate (2) by OLS.

The empirical supply function uses AHE with well-measured hours
\[
w_{it}^* = \frac{y_{it}}{h_{it}^*},
\]
where \(y_{it}\) is annual earnings. This is the hourly wage for those who are paid hourly, and its a notional time price for others. Either way, we assume this correctly-measured AHE is what consumers use to make work decisions.

In practice, however, hours are poorly measured:
\[
h_{it} = h_{it}^* \cdot \eta_{it},
\]
where \(\eta_{it}\) is proportional classical measurement error. Then
\[
\ln h_{it} = \ln h_{it}^* + \eta_{it}, \tag{3}
\]
where \(\eta_{it} = \ln \eta_{it}\). This implies that
\[
\ln w_{it} = \ln y_{it} \quad \ln h_{it} = \ln y_{it} \quad \ln h_{it}^* = \ln w_{it}^* \quad \eta_{it} \tag{4}
\]

Substituting on both sides of (2), we now have
\[
\ln h_{it} = \alpha + (\ln w_{it} + \eta_{it}) + u_{it} + \eta_{it} = \alpha + \ln w_{it} + \{u_{it} + (1 +)\eta_{it}\} \tag{5}
\]
Without worrying about the fixed effect, the OVB in OLS estimates of (5) is
\[
OVB = \frac{\text{Cov}(\ln w_{it}^*, \eta_{it}, (1 +)\eta_{it})}{\ln w} = \frac{(1 +)^2 \eta}{\ln w}
\]
which is big-time bad, even compared to the usual m.e. attenuation bias. (Note that \(\frac{2}{\ln w}\) is one minus the signal-to-noise ratio for log wages.)

Analysis of covariance aggravates division bias

To kill the fixed effect, you might difference or deviate from means. Suppose you have a two-period panel, so (2) with fixed effects becomes OLS on first diffs:
\[
\ln h_{it}^* = \ln w_{it}^* + u_{it},
\]
while the noisy wage becomes
\[
\ln w_{it} = \ln w_{it}^* + \eta_{it}.
\]
Assuming m.e. is serially uncorrelated, the variance of η_{it} is $2 \frac{2}{\bar{\eta}}$.

Wages, by contrast, are highly persistent. Suppose, $w_{it}^* = w_{it}^t$. Then

$$\ln w_{it} = \eta_{it}.$$

In other words, the change in wages is pure noise. Then we have

$$OVB = \frac{(1 +)2 \frac{2}{\bar{\eta}}}{\frac{2}{\bar{\eta}}} = (1 +)$$

so differencing here makes matters substantially worse. Research on measurement error in hours and wages bears this out: measured wage changes are noisy indeed (see, e.g., Bound and Krueger, 1991).

