14.662 Recitation 1

DFL, MM, FFL, and a quick Mundlak

Peter Hull

Spring 2015
Why All the Fancy New 'Metrics?

- Growing interest in the *distribution* of wages

- Would like to link distributional features of Y_i to other factors, X_i
 - As a descriptive task (e.g. “how much of the 90^{th}-10^{th} percentile gap in wages can we explain by differences in education?”)
 - To answer causal questions (e.g. “what would happen to the 10^{th} percentile of earnings if we made community college free?”)

- OLS/IV are all about *means*; to say something about other distributional features, we have to learn some new skills

- In some cases (e.g. “conditional” v. “unconditional” quantile regression), we have to face issues that OLS inherently sidesteps
DFL ’96 Overview

- DFL extend the Oaxaca-Blinder mean-decomposition intuition to decompose wage distributions

 Basic idea: write

 \[f(w; t_w, t_z) = \int_z f(w|z, t_w, t_z)dF(z|t_w, t_z) \]

 where \(w = \) wage, \(z = \) individual attributes, \(t_v = “time” \)
 (parameterizes distribution of \(v \))

- Assume \(f(w|z, t_w, t_z) = f(w|z, t_w), \ dF(z|t_w, t_z) = dF(z|t_z) \):

 \[
 f(w; t_w = t, t_z = t') = \int_z f(w|z, t_w = t)dF(z|t_z = t') \\
 = \int_z f(w|z, t_w = t)\psi(z; t', t)dF(z|t_z = t)
 \]

 where \(\psi(z; t', t) \equiv dF(z|t_z = t')/dF(z|t_z = t) \)
DFL ’96 Results

- $\psi(z; t', t)$ a “reweighting” that gives a “counterfactual” distribution of wages when $t' \neq t$ (like O-B)
 - Once you estimate $\psi(z; t', t)$, you can estimate (by KDE) “the density of wages] that would have prevailed if individual attributes had remained at their 1979 level and workers had been paid according to the wage schedule observed in 1988”

- By Bayes’ rule:
 $$\psi(z; t', t) \equiv \frac{P(z|t')}{P(z|t)} = \frac{P(t'|z) \cdot P(z)/P(t)}{P(t|z) \cdot P(z)/P(t)} = \frac{P(t'|z)}{P(t|z)} \cdot \frac{P(t)}{P(t')}$$
 and it’s easy to estimate these pieces (DFL use probit)

- DFL show this decomposition, while also accounting for changes in unionization rates and the min. wage (see notes for details). Find a lot of residual difference between 1979 and 1988 wage distribution
 - Reminder #1: decomposition order matters (as with O-B)
 - Reminder #2: partial equilibrium exercise (by assumption)
Part 2: Quantile Methods
Conditional QR: a Review

- The quantile function Q_Y is defined as the inverse of a CDF:
 \[Q_Y(\tau|X_i) = y \iff F_Y(y|X_i) = \tau \]
 It is thus invariant to monotone transformations $T(\cdot)$:
 \[Q_Y(\tau|X_i) = y \implies P(Y_i \leq y|X_i) = \tau \implies P(T(Y_i) \leq T(y)|X_i) = \tau \implies Q_{T(Y)}(\tau|X_i) = T(Q_Y(\tau|X_i)) = T(y) \]

- Conditional QR models $Q_Y(\tau|X_i)$ as a linear function of X_i:
 \[Q_Y(\tau|X_i) = X_i' \beta_\tau \]

- This implies (can verify by writing out integrals and taking FOC):
 \[\beta_\tau = \arg\min_b E \left[\rho_\tau(Y - X_i' b) \right] \]
 \[\rho_\tau(\varepsilon) \equiv \begin{cases}
 \tau \varepsilon, & \varepsilon \geq 0 \\
 (1 - \tau)|\varepsilon|, & \varepsilon < 0
 \end{cases} \]
Interpreting Conditional QR

- A linear $Q_Y(\tau|X_i)$ is consistent with a location-scale model:

 \[Y_i = X_i'\alpha + X_i'\delta\varepsilon_i, \quad \varepsilon_i \perp \perp X_i \]

 Since Y_i is monotone in ε_i conditional on X_i:

 \[Q_Y(\tau|X_i) = X_i'\alpha + X_i'\delta Q_\varepsilon(\tau|X_i) \]
 \[= X_i'\alpha + X_i'\delta Q_\varepsilon(\tau) = X_i'\beta_\tau \]

- β_τ is the effect of X_i on the τ^{th} quantile of Y (not the effect on the τ^{th} quantile individual)

- If X_i is multidimensional, $\beta_{\tau,1}$ is the effect of $X_{i,1}$ on the τ^{th} quantile of Y, conditional on $X_{i,2} \ldots X_{i,k}$
 - Ex: $X_i = [D_i \quad W_i']'$ for D_i binary: $\beta_{\tau,1} =$ quantile treatment effect
Why is QR “Conditional” when OLS is not?

- Suppose \(Y_i = \beta D_i + W_i' \gamma + (1 + D_i) \varepsilon_i \) with \(\varepsilon_i \perp D_i, W_i \)
 \(\implies \) Both \(E[Y|D_i, W_i] \) and \(Q_Y(\tau|D_i, W_i) \) are linear

- Both QR and OLS give the conditional effect of \(D_i \) on \(Y_i \):
 \[
 E[Y_{1i}|W_i] - E[Y_{0i}|W_i] = \beta + W_i' \gamma + E[2\varepsilon_i] - (W_i' \gamma + E[\varepsilon_i])
 \]
 \[
 = \beta
 \]
 \[
 Q_{Y_1}(\tau|W_i) - Q_{Y_0}(\tau|W_i) = \beta + W_i' \gamma + 2Q_{\varepsilon}(\tau) - (W_i' \gamma + Q_{\varepsilon}(\tau))
 \]
 \[
 = \beta + Q_{\varepsilon}(\tau)
 \]

- But not necessarily the unconditional effect:
 \[
 E[Y_{1i}] - E[Y_{0i}] = \beta + E[W_i' \gamma] + E[2\varepsilon_i] - (E[W_i' \gamma] + E[\varepsilon_i])
 \]
 \[
 = \beta
 \]
 \[
 Q_{Y_1}(\tau) - Q_{Y_0}(\tau) = \beta + Q_{W'}\gamma + 2Q_{\varepsilon}(\tau) - Q_{W'}\gamma + Q_{\varepsilon}(\tau)
 \]
 \[
 \neq \beta + Q_{W'}\gamma(\tau) + 2Q_{\varepsilon}(\tau) - (Q_{W'}\gamma(\tau) + Q_{\varepsilon}(\tau))
 \]
"Unconditioning" QR: Machado and Mata (2005)

Skorohod representation: \(Y_i = Q_Y(\theta_i|X_i) \) for \(\theta_i|X_i \sim U(0,1) \), because

\[
\theta_i = F_Y(Y_i|X_i) \implies \theta_i|X_i \sim U(0,1)
\]

\[
Q_Y(\theta_i|X_i) = Q_Y(F_Y(Y_i|X_i)|X_i) = Y_i
\]

M&M Marginalizing Method:

1. \(\forall w \in \text{supp}(W_i) \), draw \(\theta_i \), simulate \((\hat{Y}_{1wi}, \hat{Y}_{0wi}) \) with \(\hat{Q}_Y(\theta_i|D_i, W_i) \)

2. Average up \((\hat{Y}_{1wi}, \hat{Y}_{0wi}) \) by \(\hat{f}_W(w) \)

3. Compute \(\hat{Q}_{Y_1}(\tau) - \hat{Q}_{Y_0}(\tau) \)

Simple, right?

...not really.

- Computationally demanding (especially if you bootstrap SEs!)
- Can be quite sensitive to linear approximation of \(Q_Y(\theta_i|D_i, W_i) \)
- Curse of dimensionality: \(\hat{f}_W(w) \) can be poorly estimated
"RIF-ing" QR: Firpo, Fortin, and Lemieux (2009)

Graphical intuition:

Unconditional effect on the τ^{th} quantile:

$$Q_{Y_1}(\tau) - Q_{Y_0}(\tau) \approx \frac{F_{Y_0}(Q_{Y_0}(\tau)) - F_{Y_1}(Q_{Y_0}(\tau))}{f_{Y_0}(Q_{Y_0}(\tau))}$$
Influence Functions: A Quick Overview

Q: “What happens to statistic $T_X(F)$ if I perturb F by adding mass at x”?
A:

$$IF(x; T_X, F) = \lim_{\varepsilon \to 0} \frac{T_X((1 - \varepsilon)F + \varepsilon \delta_x) - T_X(F)}{\varepsilon}$$

- **Ex. 1**: $T_X(F) = E_{X \sim F}[X_i]$:

$$IF(x; T_X, F) = \lim_{\varepsilon \to 0} \frac{E_{X \sim (1 - \varepsilon)F + \varepsilon \delta_x}[X_i] - E_{X \sim F}[X_i]}{\varepsilon}$$

$$= \lim_{\varepsilon \to 0} \frac{(1 - \varepsilon)E_{X \sim F}[X_i] + \varepsilon E_{X \sim \delta_x}[X_i] - E_{X \sim F}[X_i]}{\varepsilon}$$

$$= \lim_{\varepsilon \to 0} \frac{-\varepsilon E_{X \sim F}[X_i] + \varepsilon E_{X \sim \delta_x}[X_i]}{\varepsilon} = x - \mu_X$$

- **Ex. 2**: $T_Y(F) = Q_{Y;F}(\tau)$:

$$IF(y; T_Y, F) = \frac{\tau - 1\{y \leq Q_{Y;F}(\tau)\}}{f_Y(Q_{Y;F}(\tau))}$$
Recentered Influence Functions

- FFL define:

 \[RIF(y; Q_{Y;F}(\tau), F_Y) = Q_{Y;F}(\tau) + \frac{\tau - 1\{y \leq Q_{Y;F}(\tau)\}}{f_Y(Q_{Y;F}(\tau))} \]

- Note the expectation of \(RIF(x; T_X, F) \) is just \(T_X(F) \):

 \[
 E[RIF(Y_i; Q_{Y;F}(\tau), F_Y)] = Q_{Y;F}(\tau) + \frac{\tau - E[1\{Y_i \leq Q_{Y;F}(\tau)\}]}{f_Y(Q_{Y;F}(\tau))}
 \]

 \[= Q_{Y;F}(\tau) + \frac{\tau - \tau}{f_Y(Q_{Y;F}(\tau))} = Q_{Y;F}(\tau)\]

- So if \(E[RIF(Y_i; Q_{Y;F}(\tau), F_Y)|X_i] = X_i'\beta \),

 \[Q_{Y;F}(\tau) = E[RIF(Y_i; Q_{Y;F}(\tau), F_Y)]\]

 \[= E[E[RIF(Y_i; Q_{Y;F}(\tau), F_Y)|X_i]]\]

 \[= E[X_i']\beta\]

- Coefficients of a conditional RIF also describe \textit{unconditional} quantiles
Identifying RIFs

\[
E[RIF(Y_i; Q_{Y;F}(\tau), F_Y)|X_i] = Q_{Y;F}(\tau) + \frac{\tau - E[1\{Y_i \leq Q_{Y;F}(\tau)\}|X_i]}{f_Y(Q_{Y;F}(\tau))}
\]
\[
= Q_{Y;F}(\tau) + \frac{\tau - (1 - P(Y_i > Q_{Y;F}(\tau)|X_i))}{f_Y(Q_{Y;F}(\tau))}
\]
\[
= c_\tau + \frac{P(Y_i > Q_{Y;F}(\tau)|X_i)}{f_Y(Q_{Y;F}(\tau))}
\]

If \(E[RIF(Y_i; Q_{Y;F}(\tau), F_Y)|X_i] = X_i' \beta \),

\[
c_\tau + \frac{P(Y_i > Q_{Y;F}(\tau)|X_i)}{f_Y(Q_{Y;F}(\tau))} = X_i' \beta
\]
\[\implies E[T_i|X_i] = -a_\tau + f_Y(Q_{Y;F}(\tau))X_i' \beta
\]

where \(T_i = 1\{Y_i > Q_{Y;F}(\tau)\} \)
Part 2: Quantile Methods

Firpo, Fortin, and Lemieux (2009)

Estimating RIFs

\[
E[T_i|X_i] = - c_\tau + f_Y(Q_{Y;F}(\tau))X_i'\beta
\]

So

\[
T_i = - c_\tau + f_Y(Q_{Y;F}(\tau))X_i'\beta + \epsilon_i
\]

where \(E[\epsilon_i|X_i] = 0 \)

A regression!

Estimate (best linear approximation to the) RIF by:

1. Regressing \(T_i = 1\{Y_i > Q_{Y;F}(\tau)\} \) on \(X_i \)
2. Dividing \(\hat{\beta} \) by \(\hat{f}_Y(Q_{Y;F}(\tau)) \)
3. That’s it!
RIF Limitations

- RIF approximation depends crucially on the estimated $\hat{f}_Y(Q_Y; F(\tau))$

- RIF inherently *marginal*: influence f’n describes small changes in X_i
 - MM ’05: “What is the avg. difference in quantiles of Y_{1i} and Y_{0i}?”
 - (see also Chernozhukov et al. 2009)
 - FFL ’09: “What is the avg. effect on the quantile of Y_i if we were to randomly switch one individual from $D_i = 0$ to $D_i = 1$?”

- As with all decomposition methods, RIFs reflect a “partial equilibrium”: changes in D_i holding W_i fixed

- ...but at least it can describe the unconditional distribution!
Bonus: Mundlak as OVB
The Mundlak Decomposition

As David showed in class, the fixed-effects regression

\[Y_{ij} = \alpha + r^l S_{ij} + \mu_j + \varepsilon_{ij} \]

implies a decomposition of the coefficient from regressing \(Y_{ij} \) on \(S_{ij} \):

\[r^s = r^l + \lambda b \]

where

\[\lambda = \frac{\text{Cov}(\mu_j, \bar{S}_j)}{\text{Var}(\bar{S}_j)} \]
\[b = \frac{\text{Cov}(\bar{S}_j, S_{ij})}{\text{Var}(S_i)} \]

We can think of \(\lambda \) as the return to mean establishment schooling and \(b \) as the association between worker and establishment schooling.
Mundlak as OVB

We can derive this decomposition from the classical omitted variables bias formula:

\[
\begin{align*}
\hat{r}^s &= \hat{r}^l + \frac{1}{\text{Var}(S_{ij})} \cdot \text{Cov}(\mu_j, S_{ij}) \\
\text{"short"} & \quad \text{"long"} & \quad \text{"effect of omitted"} & \quad \text{"regression of omitted on included"}
\end{align*}
\]

Define

\[
\tilde{S}_{ij} = S_{ij} - \bar{S}_j
\]

which is the “within establishment” variation in \(S_{ij}\) (i.e. the residual from regressing \(S_{ij}\) on establishment FEs. By construction

\[
\text{Cov}(\tilde{S}_j, S_{ij}) = \text{Cov}(\tilde{S}_j, \bar{S}_j + \tilde{S}_{ij}) = \text{Var}(\tilde{S}_j)
\]
Mundlak as OVB (cont.)

Therefore,

\[r^s = r^l + \frac{\text{Cov}(\mu_j, \tilde{S}_j + \tilde{S}_{ij})}{\text{Var}(\tilde{S}_j + \tilde{S}_{ij})} = r^l + \frac{\text{Cov}(\mu_j, \tilde{S}_j + \tilde{S}_{ij})}{\text{Var}(\tilde{S}_j)} \frac{\text{Var}(\tilde{S}_j)}{\text{Var}(\tilde{S}_j + \tilde{S}_{ij})} \]

\[= r^l + \frac{\text{Cov}(\mu_j, \tilde{S}_j)}{\text{Var}(\tilde{S}_j)} \frac{\text{Cov}(\tilde{S}_j, S_{ij})}{\text{Var}(\tilde{S}_j)} \]

since \(\text{Cov}(\mu_j, \tilde{S}_{ij}) = 0 \), also by construction. This is Mundlak.

We can also use OVB intuition to estimate this decomposition; note that

\[r^s = r^l + \lambda \frac{\text{Cov}(\tilde{S}_j, S_{ij})}{\text{Var}(S_i)} \]

is the OVB formula for the “long” regression of

\[Y_{ij} = \alpha^l + r^l S_{ij} + \lambda \tilde{S}_j + \epsilon_{ij}^l \]

which we can run to estimate \(\lambda \) (and then solve for \(b \))!