Dissemination of Ceramic Pot Filters by Pure Home Water in Northern Ghana

by Susan Murcott
Senior Lecturer,
Civil & Env. Eng. Dept. MIT
DLab III Lecture
April 26, 2007
Ghana Water/Sanitation Background
GHANA – Water & Sanitation Access and Millennium Development Goal (MDG) Targets

<table>
<thead>
<tr>
<th></th>
<th>2000</th>
<th>MDG - 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pop (m)</td>
<td>Access (m)</td>
</tr>
<tr>
<td>Water (MDG 2015)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rural</td>
<td>11.8</td>
<td>5.2</td>
</tr>
<tr>
<td>Urban</td>
<td>8.4</td>
<td>5.1</td>
</tr>
<tr>
<td>Total</td>
<td>20.2</td>
<td>10.3</td>
</tr>
<tr>
<td>Sanitation (MDG 2020)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rural</td>
<td>11.8</td>
<td>1.3</td>
</tr>
<tr>
<td>Urban</td>
<td>8.4</td>
<td>3.4</td>
</tr>
<tr>
<td>Total</td>
<td>20.2</td>
<td>4.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country</th>
<th>Goal 1 (Eradicate extreme poverty and hunger)</th>
<th>Goal 4 (Reduce child mortality)</th>
<th>Goal 7 (Ensure environmental sustainability)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Target Halve the proportion of people suffering from hunger</td>
<td>Target Reduce under five and infant mortality rates by two-thirds</td>
<td>Target Halve the proportion of people without sustainable access to improved water and basic sanitation</td>
</tr>
<tr>
<td>Undernourished people (as % of total pop)</td>
<td>Under-five mortality rate (Per 1,000 live births)</td>
<td>Population with improved access to water sources (%)</td>
<td>Population with improved access to basic sanitation (%)</td>
</tr>
<tr>
<td>Ghana</td>
<td>On track</td>
<td>Off track</td>
<td>Off track</td>
</tr>
<tr>
<td>Mali</td>
<td>Off track</td>
<td>Off track</td>
<td>On track</td>
</tr>
<tr>
<td>Niger</td>
<td>Off track</td>
<td>Off track</td>
<td>Off track</td>
</tr>
</tbody>
</table>
50% (0.9 million out of 1.8 million people) in Northern Region, Ghana currently use an unimproved source.

Percentage Use of Improved and Unimproved Drinking Water Sources

- **Improved Sources**
 - Boreholes
 - Household connection
 - Public standpipe
 - Rainwater harvesting
 - Protected springs and dug wells

- **Unimproved Sources**
 - All surface water sources
 - Unprotected springs and dug wells
 - Tanker trucks
 - Vendor water

Courtesy Jenny VanCalcar. Used with permission.

*Data: Ghana Statistical Service, 2003
Map: J. VanCalcar, 2006*
Close-up 3 districts in Northern Region, Ghana - by type of supply.

Note: District capital Tamale, has a municipal water treatment plant and major piped supply.

Note: Neighboring districts, Tolon and Savelugu, have dugouts as major sources.

Types of Water Sources Used by Households

Data: Ghana Statistical Service, 2003
Map: J. Van Calcar, 2006

Courtesy Jenny VanCalcar. Used with permission.
These are typical unimproved sources, called “dugouts” or dams.

Ghanasco Muali Dam

Kaleriga Dam
Types of Water Sources Used by Households in the Northern Region

Legend

- Pipe Inside the Home
- Pipe Outside the Home
- Tanker
- Well
- Borehole
- Spring or Rain Water
- Stream
- Dugout
- Other

Courtesy Jenny VanCalcar. Used with permission.
Pure Home Water

- Pure Home Water (PHW) is a social enterprise founded in 2005 which aims to provide safe drinking water via household water treatment and safe storage (HWTS) in Northern Ghana.
- Our HWTS products reduce diarrhea, guinea worm and other water-related diseases.
- MIT engineering & business student teams support PHW with R&D, monitoring & evaluation and other studies.
Since 2005, Pure Home Water has provided safe drinking water to low income communities in Ghana.
Pure Home Water’s Target Region is the Northern Sector:

- Upper West (0.57 M)
- Upper East (0.92 M)
- Northern Region (1.8M)
- Total Target Region (3.4 M)

Regions and Major Cities of Ghana

Courtesy Jenny VanCalcar. Used with permission.
Percentage of Children Under Five Years of Age With Diarrhea

Number of Communities with Endemic Guinea Worm per District

Data: Ghana Statistical Service, 2003
Map: J. VanCalcar, 2006

Data: Guinea Worm Eradication Program, 2004
Map: J. VanCalcar, 2006

Courtesy Jenny VanCalcar. Used with permission.
Ghana is one of the sole remaining guinea worm endemic countries

Woman from Yesapi, Central Gonja, with bandage covering guinea worm

Close-up of emergence of guinea worm and method of extraction

Image from Wikimedia Commons, http://commons.wikimedia.org
Year 1
Pure Home Water Products in Ghana

1 Safe Drinking Water Storage
 - Modified “safe storage” clay pots
 - Plastic “safe storage” containers

2 Filters
 - Ceramic filters
 (i). Ceramic Pot Filters ("Kosim")
 (ii) Michael Commeh’s ceramic candle filter
 (iii) Indian imported candle filter
 - Biosand Filters

3 Disinfection
 - Household Chlorination ("Safe Water System")
 - Solar Disinfection (SODIS)
Year 2 - Ceramic Pot Filter & Safe Storage

Since 2006, we have focused on disseminating the ceramic Kosim filter.
Why did we choose a ceramic pot filter?

• Extremely high turbidity, even in dry season, in the widely used surface water supplies.

Turbidity Test (NTU)
Why did we choose a ceramic pot filter?

• Culturally compatible – rural water in Ghana is universally stored in large clay vessels
AFTER
Kosim treated water

BEFORE
Kosim Filter filled with dugout water
Kosim Filter Water Quality Results

Rural (traditional) Households

Table 1. Traditional Communities

<table>
<thead>
<tr>
<th>Water Quality Test</th>
<th>Source Water</th>
<th>Filtered Water</th>
<th>Percent Removal (paired samples)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Membrane Filtration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average E. Coli CFU/100mL</td>
<td>690</td>
<td>2.5</td>
<td>99.7%</td>
</tr>
<tr>
<td>Average Total Coliform CFU/100mL</td>
<td>23,000</td>
<td>170</td>
<td>99.4%</td>
</tr>
<tr>
<td>3M Petrifilm samples)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average E. Coli CFU/100mL</td>
<td>330</td>
<td>0</td>
<td>100%</td>
</tr>
<tr>
<td>Average Total Coliform CFU/100mL</td>
<td>5700</td>
<td>180</td>
<td>94%</td>
</tr>
<tr>
<td>Hydrogen Sulfide Bacteria Presence/Absence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive for H2S Bacteria</td>
<td>97% (30/31)</td>
<td>13% (2/16)</td>
<td>87% (13/15)*</td>
</tr>
<tr>
<td>Negative for H2S Bacteria</td>
<td>3.2% (1/31)</td>
<td>88% (14/16)</td>
<td></td>
</tr>
<tr>
<td>Turbidity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average NTUs</td>
<td>190 (33 samples)</td>
<td>11 (19 samples)</td>
<td>92%</td>
</tr>
</tbody>
</table>

*Percentage of samples that tested positive in the source water and negative in the filtered water.
Kosim Filter Water Quality Results

Urban Households

Table 2. Modern Communities

<table>
<thead>
<tr>
<th>Water Quality Test</th>
<th>Source Water</th>
<th>Filtered Water</th>
<th>Percent Removal (paired samples)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Membrane Filtration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average E. Coli CFU/100mL</td>
<td>1.4</td>
<td>0.21</td>
<td>85%</td>
</tr>
<tr>
<td>Average Total Coliform CFU/100mL</td>
<td>1500</td>
<td>150</td>
<td>90%</td>
</tr>
<tr>
<td>3M Petrifilm (7 samples)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average E. Coli CFU/100mL</td>
<td>0</td>
<td>0</td>
<td>n/a</td>
</tr>
<tr>
<td>Average Total Coliform CFU/100mL</td>
<td>440</td>
<td>57</td>
<td>78%</td>
</tr>
<tr>
<td>Hydrogen Sulfide Bacteria Presence/Absence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive for H2S Bacteria</td>
<td>29% (2/7)</td>
<td>0% (0/7)</td>
<td>100% (1/1)*</td>
</tr>
<tr>
<td>Negative for H2S Bacteria</td>
<td>71% (5/7)</td>
<td>100% (7/7)</td>
<td></td>
</tr>
<tr>
<td>Turbidity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average NTUs</td>
<td>4.5</td>
<td>1.4</td>
<td>68%</td>
</tr>
</tbody>
</table>

*Percentage of samples that tested positive in the source water and negative in the filtered water.
Health Impact of *Kosim* Ceramic Filter

- Urban (modern) households with filters have **88% less risk** of having diarrheal illness compared to households without filters (Peletz 2006)

- Rural (traditional) households with filters have **69% less risk** of having diarrheal illness compared to households without filters (Johnson 2007)
Pure Home Water
New Strategy
2007

Main Goal: Demand Generation based on lower price / segmented market

• URBAN OUTREACH
• HOSPITALS AND SCHOOLS
• RURAL OUTREACH
Urban Outreach

– Provide retailers with filters and educational/promotional materials at no cost upfront

<table>
<thead>
<tr>
<th>PHW Cost (US$)</th>
<th>Retailer Price (US$)</th>
<th>Customer Price (US$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.70</td>
<td>10</td>
<td>12 (Cash)</td>
</tr>
<tr>
<td>13.70</td>
<td>10</td>
<td>13 (Credit)</td>
</tr>
</tbody>
</table>

– Train retailers in filter use and maintenance
– 10 active retailers/salespeople out of 17 trained
– Money is collected as filters are sold
– Future --- PHW-run retail outlet in 2007 (?)
Hospital Outreach

- Meet with District Health Director and other officials
- Presentation for nurses and other caregivers at hospital
- Free filters for inpatient use

- Nurse volunteer responsible for
 - Maintaining PHW products in hospital
 - Answering patient questions about HWTS
 - Selling of filters
 - Collecting and transmitting user feedback
School Outreach

- Meet with GES and GWP to determine target schools
- Presentation for teachers
- **Free filters for classroom use** (1/class or 1/40 students)
- **Teacher volunteer** responsible for
 - Overseeing maintenance of PHW products in school
 - Answering student and parent questions about HWTS and PHW educational materials placed in classrooms
 - Collecting and transmitting user feedback
Rural Outreach

• Meet with partner NGOs to target communities
• Free filters for opinion leaders
• Presentation for community
• Community liaison will
 • Organize community product presentations
 • Answer in-field questions
 • Facilitate distribution
 • Monitor use and transmit user feedback
 • Attend bi-monthly liaison meeting with PHW

<table>
<thead>
<tr>
<th>PHW Cost</th>
<th>Liaison</th>
<th>Customer</th>
</tr>
</thead>
<tbody>
<tr>
<td>$13.70</td>
<td>$5</td>
<td>$6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Cash/Credit)</td>
</tr>
</tbody>
</table>
Rural Outreach: Training

• Community liaison training
 – Held every 6 weeks
 – Conducted in local language; presenters evaluated by peers
 – Information traded and new goals assigned, materials distributed
2007 Summary

We aim to:
– Reach hospitals, schools, religious centers and opinion leaders
– Train community liaisons, educators, nurses, and retailers to educate communities and customers about HWTS
– Establish a system of distribution that responds quickly and cost-effectively to demand

<table>
<thead>
<tr>
<th>Distribution Type</th>
<th>Distributor Cost</th>
<th>Customer Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOSPITAL</td>
<td>$10</td>
<td>$12</td>
</tr>
<tr>
<td>RURAL</td>
<td>$5</td>
<td>$6</td>
</tr>
<tr>
<td>URBAN</td>
<td>$10</td>
<td>$12</td>
</tr>
</tbody>
</table>
Villages with unimproved water supplies (dugouts) which have household ceramic filters in Tamale District
Estimated # People Reached

Years 1 & 2 (June ’05 to July ’07)

<table>
<thead>
<tr>
<th>Category</th>
<th># People/HH</th>
<th># People</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban/Retail</td>
<td>6</td>
<td>5,797</td>
</tr>
<tr>
<td>Rural</td>
<td>12</td>
<td>8,508</td>
</tr>
<tr>
<td>Free – Schools & Clinics</td>
<td>40</td>
<td>4,600</td>
</tr>
<tr>
<td>International</td>
<td>9</td>
<td>1,080</td>
</tr>
<tr>
<td>TOTAL</td>
<td>19,984</td>
<td></td>
</tr>
</tbody>
</table>
So… how do we scale up to reach millions of people?

Courtesy Matt Stevenson. Used with permission.
PHW’s 5-Year Expansion Program
PHW’s Expansion Program
2008 – 2013
(100,000 filters to 1 million people)

<table>
<thead>
<tr>
<th></th>
<th>%</th>
<th>Est. # HouseHolds</th>
<th># People</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td>20%</td>
<td>20,000</td>
<td>200,000</td>
</tr>
<tr>
<td>Rural</td>
<td>75%</td>
<td>75,000</td>
<td>750,000</td>
</tr>
<tr>
<td>Free hospitals, schools</td>
<td>5%</td>
<td>5,000</td>
<td>50,000</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100,000</td>
<td>1,000,000</td>
</tr>
</tbody>
</table>
Pure Home Water’s Challenges
Ceramic Breakage in Transport
Breakage in Use
Awareness and Training

Courtesy Matt Stevenson. Used with permission.
Awareness of Educational Materials

A lesson in pictures:

Water drunk straight from the dugout leads to guinea worm and the hospital.

Water drunk from the filter leads to school and happy family.
Local Capacity to Sell Filters
Demand Generation – through awareness & training, social marketing & networking
Transportation & Fuel Costs
Behavior Change

Proper Cleaning & Maintenance

HOW TO USE YOUR FILTER
1. Before using the new filter,
 A. Fill the filter receptacle halfway with water and.
 B. Add 10 drops of chlorine bleach or 18 drops of iodine to this water.
 C. Let it sit for 30 minutes.
 D. Use this water to rinse the receptacle, clay filter, lid and faucet and your hands. If chlorine or iodine is not available fill the receptacle halfway with boiled water and when it cools pour this water over the lid, faucet and filter. Discard all the water.
 E. Only chlorinated, boiled, or water treated with iodine will kill bacteria in the receptacle.

2. Place the clay filter in the plastic receptacle immediately.

3. Fill the filter several times and discard the filtered water. This will remove the taste of the clay.

4. If your river or well water is cloudy, use a piece of cloth over the filter element to prefilter the water each time. Tie a string around the cloth so that it does not fall into the filter.

5. Your filter will flow faster when it is full, so it often.

Prefiltering will help your filter to flow faster.

HOW TO CLEAN YOUR FILTER AND RECEPTACLE

1. FILTER CLEANING
 You do not need to clean your filter more than once a month unless it starts to filter too slowly.

 When this happens, carefully remove the filter. Leave the receptacle at least half full of filtered water. Place the filter on a cloth that has been washed in chlorinated or boiled water.

2. Using water from the receptacle, fill the filter halfway and scrub it vigorously with a brush to unclog the pores. Discard the dirty water. You will have some small particles of clay come off if you are scrubbing hard enough.

3. CLEANING THE RECEPTACLE
 The filter receptacle should be cleaned each month. Follow the directions above beginning with "1-A" for cleaning your receptacle.

 The clay filter will usually last a year before it becomes too clogged to provide enough water. At this time it should be replaced. If cleaning still restores the flow it does not need to be replaced. To replace your filter contact...
Gender Roles
Effect of Commercial Sales vs. Free Emergency Distribution in Neighboring Regions
Limited Resources Capacity

- Currently PHW has 3 full time and 2 part time staff.
Big Plans for 2007-2008

- Increase retail operations and extend our schools, hospitals and rural community outreach,
- Potentially establish a ceramic filter manufacturing facility in the Northern Region,
- Set up a laboratory capable of performing advanced microbiological and other water quality testing
- Continue capacity-building in a range of areas (management, accounting, operations, social marketing, and vehicle maintenance),
- Acquire a vehicle capable of transporting filters for outreach and sales,
- Open our own retail shop in Tamale (proposed),
- Engage key Ghanaian partner organizations to shape a national strategy for unified ceramic filter dissemination (common branding, shared promotional materials, unified pricing), and
- Continue to expand and share our GIS mapping of water sources in Northern Ghana with government agencies and fellow NGOs.
We are weighing whether to build our own Factory. Reasons:

- Offer Kosim filter at much lower price so PHW can break-even
- Eliminate 12+ hour transport from South to North, with issues of breakage, fuel and vehicle costs
- Control quality of product
- Field laboratory to focus on research and development for product improvement
 - Breakage
 - Role of colloidal silver
 - Improved bacterial removal
 - Virus removal
Filter Manufacturer - Peter Tamakloe of Ceramica Tamakloe
Ceramica Tamakloe, Accra, Ghana
References

For More Info:

• http://web.mit.edu/watsan/meng_ghan.html