Lecture 7: Flip-Flops and 555 Timer Circuit

Topics:
1) Comparator Review
2) Flip Flops
3) 555 as oscillator
4) 555 as “one-shot”

Comparator Review:

 Comparator Review:

- Feedback loop is not used.
- Decides if one voltage is greater than the other.
- Takes analog voltages and convert them into a series of bits.
- Binary representation of 4 digits give you 16 values (4-bit converter).
- Circuit above is a 1-bit converter:
 - “0” or “1” output depending which voltage is greater than the other.

Flip Flops:

- R-S Flip Flop
 - R ≡ Reset
 - S ≡ Set
 - Two Values
 - TRUE “1” Hi Voltage
 - FALSE “0” Lo Voltage
For some circuits: We use:

\[\text{Hi} \equiv 5V \quad \text{Hi} \equiv +V \]
\[\text{Lo} \equiv 0V \quad \text{Lo} \equiv -V \]

<table>
<thead>
<tr>
<th>INPUTS</th>
<th>OUTPUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R)</td>
<td>(S)</td>
</tr>
<tr>
<td>Lo</td>
<td>Lo</td>
</tr>
<tr>
<td>Lo</td>
<td>Hi</td>
</tr>
<tr>
<td>Hi</td>
<td>Lo</td>
</tr>
<tr>
<td>Hi</td>
<td>Hi</td>
</tr>
</tbody>
</table>

Once can force the output \(Q \) to be “HI” by setting \(S \) to “HI”. Similarly, one can force the \(Q \) output to “LO” by resetting \(R \) to “LO”. If one drives both \(R \) and \(S \) to “HI”, there is no guarantee about the output’s state.

555 as Oscillator:

![555 Circuit Diagram]
<table>
<thead>
<tr>
<th>Voltage @ Pin 2 & 6 (V_{2-6})</th>
<th>Output of C_R</th>
<th>Output of C_S</th>
<th>Output Q</th>
<th>Output \overline{Q}</th>
<th>Transistor @ Pin 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$< \frac{1}{3} V_0$</td>
<td>Lo</td>
<td>Hi</td>
<td>Hi</td>
<td>Lo</td>
<td>OFF</td>
</tr>
<tr>
<td>$\frac{1}{3} V_0 < V_{2-6} < \frac{2}{3} V_0$</td>
<td>Lo</td>
<td>Lo</td>
<td>Stay</td>
<td>Stay</td>
<td>Stay</td>
</tr>
<tr>
<td>$> \frac{2}{3} V_0$</td>
<td>Hi</td>
<td>Lo</td>
<td>Lo</td>
<td>Hi</td>
<td>ON</td>
</tr>
</tbody>
</table>

555 as Oscillator:

![555 Oscillator Circuit Diagram]

SP.764, Practical Electronics
Dr. James A. Bales
Lecture 7
Page 3 of 4
Assume there is no charge in the capacitor at start. Because V_{CAP} is at 0V and it connects to pins 2 and 6, the input is at 0V at time $t = 0$. When the circuit is powered up, the capacitor starts charging. When the V_{CAP} reaches $2/3 \, V_0$, the transistor turns on and grounds pin 7. Therefore, the capacitor starts to discharge through R_B until V_{CAP} reaches $1/3 \, V_0$, at which point the transistor turns off and the capacitor starts to charge up again.