from pylab import *
import random, math

def flipTrial(numFlips):
 heads, tails = 0, 0
 for i in xrange(0, numFlips):
 coin = random.randint(0, 1)
 if coin == 0: heads += 1
 else: tails += 1
 return heads, tails

def simFlips(numFlips, numTrials):
 diffs = []
 for i in xrange(0, numTrials):
 heads, tails = flipTrial(numFlips)
 diffs.append(abs(heads - tails))
 diffs = array(diffs)
 diffMean = sum(diffs)/len(diffs)
 diffPercent = (diffs/float(numFlips))*100
 percentMean = sum(diffPercent)/len(diffPercent)
 hist(diffs)
 axvline(diffMean, color = 'r', label = 'Mean')
 legend()
 titleString = str(numFlips) + ' Flips, ' + str(numTrials) + ' Trials'
 title(titleString)
 xlabel('Difference between heads and tails')
 ylabel('Number of Trials')
 figure()
 plot(diffPercent)
 axhline(percentMean, color = 'r', label = 'Mean')
 legend()
 title(titleString)
 xlabel('Trial Number')
 ylabel('Percent Difference between heads and tails')
Number in shaded area \(\pi r^2 \cdot .25 \)

Number in square \(\frac{\pi r^2}{r^2} \)

\[\pi = \frac{4 \cdot \text{Number in shaded area}}{\text{Number in square}} \]

#Tell Python which local standard to use
import locale
locale.setlocale(locale.LC_ALL, 'en_US.UTF-8')

#Format ints according to local standard
def formatInt(i):
 return locale.format('%d', i, grouping=True)

from pylab import *
import random, math

def throwDarts(numDarts, shouldPlot):
inCircle = 0
estimates = []
for darts in xrange(1, numDarts + 1, 1):
x = random.random()
y = random.random()
if math.sqrt(x*x + y*y) <= 1.0:
inCircle += 1
if shouldPlot:
 piGuess = 4*(inCircle/float(darts))
estimates.append(piGuess)
if darts%1000000 == 0: #So I know it's making progress
 piGuess = 4*(inCircle/float(darts))
dartsStr = locale.format('%d', darts, True)
 print 'Estimate with', formatInt(darts), 'darts:', piGuess
if shouldPlot:
xAxis = arange(1, len(estimates)+1)
semilogx(xAxis, estimates)
titleString = 'Estimations of pi, final estimate: ' + str(piGuess)
title(titleString)
xlabel('Number of Darts Thrown')
ylabel('Estimate of pi')
axhline(3.14159)
return 4*(inCircle/float(numDarts))

def findPi(numDarts, shouldPlot=False):
 piGuess = throwDarts(numDarts, shouldPlot)
 print 'Estimated value of pi with', formatInt(numDarts), 'darts:', piGuess

findPi(10000, True)
findPi(1000000000)
show()