UNDERSTANDING PROGRAM EFFICIENCY: 2
(download slides and .py files and follow along!)

6.0001 LECTURE 11
TODAY

- Classes of complexity
- Examples characteristic of each class
WHY WE WANT TO UNDERSTAND EFFICIENCY OF PROGRAMS

- how can we reason about an algorithm in order to predict the amount of time it will need to solve a problem of a particular size?

- how can we relate choices in algorithm design to the time efficiency of the resulting algorithm?
 - are there fundamental limits on the amount of time we will need to solve a particular problem?
ORDERS OF GROWTH: RECAP

Goals:

- want to evaluate program’s efficiency when input is very big
- want to express the growth of program’s run time as input size grows
- want to put an upper bound on growth – as tight as possible
- do not need to be precise: “order of” not “exact” growth
- we will look at largest factors in run time (which section of the program will take the longest to run?)
- thus, generally we want tight upper bound on growth, as function of size of input, in worst case
COMPLEXITY CLASSES: RECAP

- $O(1)$ denotes constant running time
- $O(\log n)$ denotes logarithmic running time
- $O(n)$ denotes linear running time
- $O(n \log n)$ denotes log-linear running time
- $O(n^c)$ denotes polynomial running time (c is a constant)
- $O(c^n)$ denotes exponential running time (c is a constant being raised to a power based on size of input)
<table>
<thead>
<tr>
<th>Complexity Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(1)$</td>
<td>constant</td>
</tr>
<tr>
<td>$O(\log n)$</td>
<td>logarithmic</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>linear</td>
</tr>
<tr>
<td>$O(n \log n)$</td>
<td>loglinear</td>
</tr>
<tr>
<td>$O(n^c)$</td>
<td>polynomial</td>
</tr>
<tr>
<td>$O(c^n)$</td>
<td>exponential</td>
</tr>
</tbody>
</table>
COMPLEXITY GROWTH

<table>
<thead>
<tr>
<th>CLASS</th>
<th>n=10</th>
<th>= 100</th>
<th>= 1000</th>
<th>= 1000000</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>O(log n)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>O(n)</td>
<td>10</td>
<td>100</td>
<td>1000</td>
<td>1000000</td>
</tr>
<tr>
<td>O(n log n)</td>
<td>10</td>
<td>200</td>
<td>3000</td>
<td>6000000</td>
</tr>
<tr>
<td>O(n^2)</td>
<td>100</td>
<td>10000</td>
<td>100000</td>
<td>100000000</td>
</tr>
<tr>
<td>O(2^n)</td>
<td>1024</td>
<td>12676506</td>
<td>1071508607186267320948425049060</td>
<td>6.0001 LECTURE 11</td>
</tr>
</tbody>
</table>

Good luck!!
CONSTANT COMPLEXITY

- complexity independent of inputs
- very few interesting algorithms in this class, but can often have pieces that fit this class
- can have loops or recursive calls, but ONLY IF number of iterations or calls independent of size of input
LOGARITHMIC COMPLEXITY

- complexity grows as log of size of one of its inputs

- example:
 - bisection search
 - binary search of a list
BISECTION SEARCH

- suppose we want to know if a particular element is present in a list
- saw last time that we could just “walk down” the list, checking each element
- complexity was linear in length of the list
- suppose we know that the list is ordered from smallest to largest
 - saw that sequential search was still linear in complexity
 - can we do better?
BISECTION SEARCH

1. pick an index, \(i \), that divides list in half
2. ask if \(L[i] = e \)
3. if not, ask if \(L[i] \) is larger or smaller than \(e \)
4. depending on answer, search left or right half of \(L \) for \(e \)

A new version of a divide-and-conquer algorithm

- break into smaller version of problem (smaller list), plus some simple operations
- answer to smaller version is answer to original problem
BISECTION SEARCH

COMPLEXITY ANALYSIS

- finish looking through list when
 \[1 = \frac{n}{2^i} \]
 so \(i = \log n \)

- complexity of recursion is \(O(\log n) \) – where \(n \) is len(L)
BISECTION SEARCH IMPLEMENTATION 1

```python
def bisect_search1(L, e):
    if L == []:
        return False
    elif len(L) == 1:
        return L[0] == e
    else:
        half = len(L)//2
        if L[half] > e:
            return bisect_search1(L[:half], e)
        else:
            return bisect_search1(L[half:], e)
```

6.0001 LECTURE 11
COMPLEXITY OF FIRST BISECTION SEARCH METHOD

• implementation 1 – bisect_search1
 - O(log n) bisection search calls
 - On each recursive call, size of range to be searched is cut in half
 - If original range is of size n, in worst case down to range of size 1 when n/(2^k) = 1; or when k = log n
 - O(n) for each bisection search call to copy list
 - This is the cost to set up each call, so do this for each level of recursion
 - O(log n) * O(n) \rightarrow O(n \log n)
 - if we are really careful, note that length of list to be copied is also halved on each recursive call
 - turns out that total cost to copy is O(n) and this dominates the log n cost due to the recursive calls
BISECTION SEARCH ALTERNATIVE

- still reduce size of problem by factor of two on each step
- but just keep track of low and high portion of list to be searched
- avoid copying the list
- complexity of recursion is again $O(\log n)$ – where n is $\text{len}(L)$
def bisect_search2(L, e):
 def bisect_search_helper(L, e, low, high):
 if high == low:
 return L[low] == e
 mid = (low + high)//2
 if L[mid] == e:
 return True
 elif L[mid] > e:
 if low == mid: #nothing left to search
 return False
 else:
 return bisect_search_helper(L, e, low, mid - 1)
 else:
 return bisect_search_helper(L, e, mid + 1, high)
 if len(L) == 0:
 return False
 else:
 return bisect_search_helper(L, e, 0, len(L) - 1)
COMPLEXITY OF SECOND BISECTION SEARCH METHOD

- **implementation 2 – bisect_search2** and its helper
 - O(\log n) bisection search calls
 - On each recursive call, size of range to be searched is cut in half
 - If original range is of size n, in worst case down to range of size 1 when \(n/(2^k) = 1 \); or when \(k = \log n \)
 - pass list and indices as parameters
 - list never copied, just re-passed as a pointer
 - thus O(1) work on each recursive call
 - O(\log n) \times O(1) \rightarrow O(\log n)
def intToStr(i):
 digits = '0123456789'
 if i == 0:
 return '0'
 result = ''
 while i > 0:
 result = digits[i%10] + result
 i = i//10
 return result
LOGARITHMIC COMPLEXITY

def intToStr(i):
 digits = '0123456789'
 if i == 0:
 return '0'
 res = ''
 while i > 0:
 res = digits[i%10] + res
 i = i//10
 return res

only have to look at loop as no function calls
within while loop, constant number of steps
how many times through loop?
 ◦ how many times can one divide i by 10?
 ◦ $O(log(i))$
LINEAR COMPLEXITY

- saw this last time
 - searching a list in sequence to see if an element is present
 - iterative loops
O() FOR ITERATIVE FACTORIAL

- complexity can depend on number of iterative calls

```python
def fact_iter(n):
    prod = 1
    for i in range(1, n+1):
        prod *= i
    return prod
```

- overall $O(n)$ – n times round loop, constant cost each time
O() FOR RECURSIVE FACTORIAL

```python
def fact_recur(n):
    """ assume n >= 0 """
    if n <= 1:
        return 1
    else:
        return n*fact_recur(n - 1)
```

- computes factorial recursively
- if you time it, may notice that it runs a bit slower than iterative version due to function calls
- still \(O(n)\) because the number of function calls is linear in \(n\), and constant effort to set up call
- **iterative and recursive factorial** implementations are the same order of growth
LOG-LINEAR COMPLETITY

- many practical algorithms are log-linear
- very commonly used log-linear algorithm is merge sort
- will return to this next lecture
POLYNOMIAL COMPLEXITY

- most common polynomial algorithms are quadratic, i.e., complexity grows with square of size of input
- commonly occurs when we have nested loops or recursive function calls
- saw this last time
EXPONENTIAL COMPLEXITY

- recursive functions where more than one recursive call for each size of problem
 - Towers of Hanoi

- many important problems are inherently exponential
 - unfortunate, as cost can be high
 - will lead us to consider approximate solutions as may provide reasonable answer more quickly
COMPLEXITY OF TOWERS OF HANOI

- Let t_n denote time to solve tower of size n
- $t_n = 2t_{n-1} + 1$
 - $= 2(2t_{n-2} + 1) + 1$
 - $= 4t_{n-2} + 2 + 1$
 - $= 4(2t_{n-3} + 1) + 2 + 1$
 - $= 8t_{n-3} + 4 + 2 + 1$
 - $= 2^k t_{n-k} + 2^{k-1} + \ldots + 4 + 2 + 1$
 - $= 2^{n-1} + 2^{n-2} + \ldots + 4 + 2 + 1$
 - $= 2^n - 1$
- so order of growth is $O(2^n)$

Geometric growth

\[
\begin{align*}
 a &= 2^{n-1} + \ldots + 2 + 1 \\
 2a &= 2^n + 2^{n-1} + \ldots + 2 \\
 a &= 2^n - 1
\end{align*}
\]
EXPONENTIAL COMPLEXITY

- given a set of integers (with no repeats), want to generate the collection of all possible subsets – called the power set

- \{1, 2, 3, 4\} would generate
 - {}, \{1\}, \{2\}, \{3\}, \{4\}, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}, \{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}

- order doesn’t matter
 - {}, \{1\}, \{2\}, \{1, 2\}, \{3\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}, \{4\}, \{1, 4\}, \{2, 4\}, \{1, 2, 4\}, \{3, 4\}, \{1, 3, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}
POWER SET – CONCEPT

- we want to generate the power set of integers from 1 to n
- assume we can generate power set of integers from 1 to n-1
- then all of those subsets belong to bigger power set (choosing not include n); and all of those subsets with n added to each of them also belong to the bigger power set (choosing to include n)
- \[
\{\}, \{1\}, \{2\}, \{1, 2\}, \{3\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}, \{4\}, \{1, 4\}, \{2, 4\}, \{1, 2, 4\}, \{3, 4\}, \{1, 3, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}\]

- nice recursive description!
def genSubsets(L):
 res = []
 if len(L) == 0:
 return [[]] # list of empty list
 smaller = genSubsets(L[:-1]) # all subsets without last element
 extra = L[-1:] # create a list of just last element
 new = []
 for small in smaller:
 new.append(small + extra) # for all smaller solutions, add one with last element
 return smaller + new # combine those with last element and those without
EXPONENTIAL COMPLEXITY

```python
def genSubsets(L):
    res = []
    if len(L) == 0:
        return [[]]
    smaller = genSubsets(L[:-1])
    extra = L[-1:]
    new = []
    for small in smaller:
        new.append(small + extra)
    return smaller + new
```

assuming append is constant time
time includes time to solve smaller problem, plus time needed to make a copy of all elements in smaller problem
def genSubsets(L):
 res = []
 if len(L) == 0:
 return [[]]
 smaller = genSubsets(L[:-1])
 extra = L[-1:]
 new = []
 for small in smaller:
 new.append(small+extra)
 return smaller+new

but important to think about size of smaller
know that for a set of size k there are 2^k cases
how can we deduce overall complexity?
EXPONENTIAL COMPLEXITY

- let t_n denote time to solve problem of size n
- let s_n denote size of solution for problem of size n
- $t_n = t_{n-1} + s_{n-1} + c$ (where c is some constant number of operations)
- $t_n = t_{n-1} + 2^{n-1} + c$
- $= t_{n-2} + 2^{n-2} + c + 2^{n-1} + c$
- $= t_{n-k} + 2^{n-k} + ... + 2^{n-1} + kc$
- $= t_0 + 2^0 + ... + 2^{n-1} + nc$
- $= 1 + 2^n + nc$

Thus computing power set is $O(2^n)$
COMPLEXITY CLASSES

- $O(1)$ – code does not depend on size of problem
- $O(\log n)$ – reduce problem in half each time through process
- $O(n)$ – simple iterative or recursive programs
- $O(n \log n)$ – will see next time
- $O(n^c)$ – nested loops or recursive calls
- $O(c^n)$ – multiple recursive calls at each level
SOME MORE EXAMPLES OF ANALYZING COMPLEXITY
def fib_iter(n):
 if n == 0:
 return 0
 elif n == 1:
 return 1
 else:
 fib_i = 0
 fib_ii = 1
 for i in range(n-1):
 tmp = fib_i
 fib_i = fib_ii
 fib_ii = tmp + fib_ii
 return fib_ii

- Best case: O(1)
- Worst case: O(1) + O(n) + O(1) \(\Rightarrow \) O(n)
COMPLEXITY OF RECURSIVE FIBONACCI

def fib_recur(n):
 """ assumes n an int >= 0 """
 if n == 0:
 return 0
 elif n == 1:
 return 1
 else:
 return fib_recur(n-1) + fib_recur(n-2)

- Worst case:
 \(O(2^n) \)
COMPLEXITY OF RECURSIVE FIBONACCI

- actually can do a bit better than 2^n since tree of cases thins out to right
- but complexity is still exponential
BIG OH SUMMARY

- compare **efficiency of algorithms**
 - notation that describes growth
 - **lower order of growth** is better
 - independent of machine or specific implementation

- use Big Oh
 - describe order of growth
 - **asymptotic notation**
 - **upper bound**
 - **worst case** analysis
COMPLEXITY OF COMMON PYTHON FUNCTIONS

- **Lists:** \(n \) is \(\text{len}(L) \)
 - index: \(O(1) \)
 - store: \(O(1) \)
 - length: \(O(1) \)
 - append: \(O(1) \)
 - \(== \): \(O(n) \)
 - remove: \(O(n) \)
 - copy: \(O(n) \)
 - reverse: \(O(n) \)
 - iteration: \(O(n) \)
 - in list: \(O(n) \)

- **Dictionaries:** \(n \) is \(\text{len}(d) \)
 - worst case
 - index: \(O(n) \)
 - store: \(O(n) \)
 - length: \(O(n) \)
 - delete: \(O(n) \)
 - iteration: \(O(n) \)
 - average case
 - index: \(O(1) \)
 - store: \(O(1) \)
 - delete: \(O(1) \)
 - iteration: \(O(n) \)