Lecture 12: Clustering
Reading

- Chapter 23
Machine Learning Paradigm

- Observe set of examples: *training data*
- Infer something about process that generated that data
- Use inference to make predictions about previously unseen data: *test data*
- Supervised: given a set of feature/label pairs, find a rule that predicts the label associated with a previously unseen input
- *Unsupervised*: given a set of feature vectors (without labels) group them into “natural clusters”
Clustering Is an Optimization Problem

\[
\text{variability}(c) = \sum_{e \in c} \text{distance}(\text{mean}(c), e)^2
\]

\[
\text{dissimilarity}(C) = \sum_{c \in C} \text{variability}(c)
\]

- Why not divide variability by size of cluster?
 - Big and bad worse than small and bad
- Is optimization problem finding a \(C \) that minimizes \(\text{dissimilarity}(C) \)?
 - No, otherwise could put each example in its own cluster
- Need a constraint, e.g.,
 - Minimum distance between clusters
 - Number of clusters
Two Popular Methods

- Hierarchical clustering
- K-means clustering
Hierarchical Clustering

1. Start by assigning each item to a cluster, so that if you have N items, you now have N clusters, each containing just one item.

2. Find the closest (most similar) pair of clusters and merge them into a single cluster, so that now you have one fewer cluster.

3. Continue the process until all items are clustered into a single cluster of size N.

What does distance mean?
Linkage Metrics

- **Single-linkage**: consider the distance between one cluster and another cluster to be equal to the **shortest** distance from any member of one cluster to any member of the other cluster.

- **Complete-linkage**: consider the distance between one cluster and another cluster to be equal to the **greatest** distance from any member of one cluster to any member of the other cluster.

- **Average-linkage**: consider the distance between one cluster and another cluster to be equal to the **average** distance from any member of one cluster to any member of the other cluster.
Example of Hierarchical Clustering

<table>
<thead>
<tr>
<th></th>
<th>BOS</th>
<th>NY</th>
<th>CHI</th>
<th>DEN</th>
<th>SF</th>
<th>SEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOS</td>
<td>0</td>
<td>206</td>
<td>963</td>
<td>1949</td>
<td>3095</td>
<td>2979</td>
</tr>
<tr>
<td>NY</td>
<td>0</td>
<td>802</td>
<td>1771</td>
<td>2934</td>
<td>2815</td>
<td></td>
</tr>
<tr>
<td>CHI</td>
<td>0</td>
<td>966</td>
<td>2142</td>
<td>2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEN</td>
<td>0</td>
<td></td>
<td>1235</td>
<td>1307</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SF</td>
<td></td>
<td></td>
<td>0</td>
<td>807</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

{o:BOS} {NY} {CHI} {DEN} {SF} {SEA}
{o:BOS, NY} {CHI} {DEN} {SF} {SEA}
{o:BOS, NY, CHI} {DEN} {SF} {SEA}
{o:BOS, NY, CHI, DEN} {SF, SEA} Single linkage
{o:BOS, NY, CHI} {DEN, SF, SEA} Complete linkage
Clustering Algorithms

- **Hierarchical clustering**
 - Can select number of clusters using dendogram
 - Deterministic
 - Flexible with respect to linkage criteria
 - Slow
 - Naïve algorithm n^3
 - n^2 algorithms exist for some linkage criteria

- **K-means** a much faster greedy algorithm
 - Most useful when you know how many clusters you want
K-means Algorithm

randomly chose k examples as initial centroids
while true:
 create k clusters by assigning each example to closest centroid
 compute k new centroids by averaging examples in each cluster
 if centroids don’t change:
 break

What is complexity of one iteration?

k*n*d, where n is number of points and d time required to compute the distance between a pair of points
An Example
K = 4, Initial Centroids
Iteration 1
Iteration 2
Iteration 3
Iteration 4
Iteration 5
Issues with k-means

- Choosing the “wrong” k can lead to strange results
 - Consider k = 3

- Result can depend upon initial centroids
 - Number of iterations
 - Even final result
 - Greedy algorithm can find different local optimas
How to Choose K

- A priori knowledge about application domain
 - There are two kinds of people in the world: $k = 2$
 - There are five different types of bacteria: $k = 5$

- Search for a good k
 - Try different values of k and evaluate quality of results
 - Run hierarchical clustering on subset of data
Unlucky Initial Centroids
Converges On
Mitigating Dependence on Initial Centroids

Try multiple sets of randomly chosen initial centroids

Select “best” result

```
best = kMeans(points)
for t in range(numTrials):
    C = kMeans(points)
    if dissimilarity(C) < dissimilarity(best):
        best = C
return best
```
An Example

- Many patients with 4 features each
 - Heart rate in beats per minute
 - Number of past heart attacks
 - Age
 - ST elevation (binary)

- Outcome (death) based on features
 - Probabilistic, not deterministic
 - E.g., older people with multiple heart attacks at higher risk

- Cluster, and examine purity of clusters relative to outcomes
Data Sample

<table>
<thead>
<tr>
<th>HR</th>
<th>Att</th>
<th>STE</th>
<th>Age</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>89</td>
<td>1</td>
<td>0</td>
<td>66.</td>
<td>1</td>
</tr>
<tr>
<td>59</td>
<td>0</td>
<td>0</td>
<td>72.</td>
<td>0</td>
</tr>
<tr>
<td>73</td>
<td>0</td>
<td>0</td>
<td>73.</td>
<td>0</td>
</tr>
<tr>
<td>56</td>
<td>1</td>
<td>0</td>
<td>65.</td>
<td>0</td>
</tr>
<tr>
<td>75</td>
<td>1</td>
<td>1</td>
<td>68.</td>
<td>1</td>
</tr>
<tr>
<td>68</td>
<td>1</td>
<td>0</td>
<td>56.</td>
<td>0</td>
</tr>
<tr>
<td>73</td>
<td>1</td>
<td>0</td>
<td>75.</td>
<td>1</td>
</tr>
<tr>
<td>72</td>
<td>0</td>
<td>0</td>
<td>65.</td>
<td>0</td>
</tr>
<tr>
<td>73</td>
<td>1</td>
<td>0</td>
<td>64.</td>
<td>1</td>
</tr>
<tr>
<td>73</td>
<td>0</td>
<td>0</td>
<td>58.</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>0</td>
<td>75.</td>
<td>0</td>
</tr>
<tr>
<td>79</td>
<td>0</td>
<td>0</td>
<td>31.</td>
<td>0</td>
</tr>
<tr>
<td>81</td>
<td>0</td>
<td>0</td>
<td>58.</td>
<td>0</td>
</tr>
<tr>
<td>89</td>
<td>1</td>
<td>0</td>
<td>50.</td>
<td>1</td>
</tr>
<tr>
<td>81</td>
<td>0</td>
<td>0</td>
<td>70.</td>
<td>0</td>
</tr>
</tbody>
</table>
class Example(object):

 def __init__(self, name, features, label = None):
 # Assumes features is an array of floats
 self.name = name
 self.features = features
 self.label = label

 ...

 def distance(self, other):
 return minkowskiDist(self.features,
 other.getFeatures(), 2)

 ...
class Cluster(object):

 def __init__(self, examples):
 """Assumes examples a non-empty list of Examples""
 ...

 def update(self, examples):
 """Assume examples is a non-empty list of Examples
 Replace examples; return amount centroid has changed""
 ...

 def computeCentroid(self):
 vals = pylab.array([0.0]*self.examples[0].
 dimensionality())
 for e in self.examples: # compute mean
 vals += e.getFeatures()
 centroid = Example('centroid', vals/len(self.examples))
 return centroid
def variability(self):
 totDist = 0
 for e in self.examples:
 totDist += (e.distance(self.centroid))**2
 return totDist

def members(self):
 for e in self.examples:
 yield e

...
def dissimilarity(clusters):
 """Assumes clusters a list of clusters
 Returns a measure of the total dissimilarity of the
 clusters in the list""
 totDist = 0
 for c in clusters:
 totDist += c.variability()
 return totDist
Patients

```
import cluster, pylab, numpy

class Patient(cluster.Example):
    pass

def scaleAttrs(vals):
    vals = pylab.array(vals)
    mean = sum(vals)/len(vals)
    sd = numpy.std(vals)
    vals = vals - mean
    return vals/sd

def getData(toScale = False):
    #read in data
    ...
    if toScale:
        hrList = scaleAttrs(hrList)
    ...
    #Build points
    ...
    return points
```

Z-Scaling
Mean = ?
Std = ?
def kmeans(examples, k, verbose = False):
 #Get k randomly chosen initial centroids,
 #create cluster for each
 ...
 #Iterate until centroids do not change
 ...
 #Associate each example with closest centroid
 ...
 for c in newClusters: #Avoid having empty clusters
 if len(c) == 0:
 raise ValueError('Empty Cluster')

 #Update each cluster; check if a centroid has changed
 ...

def trykmeans(examples, numClusters, numTrials, verbose=False):
 """ Calls kmeans numTrials times and returns the result with
 the lowest dissimilarity """
Examining Results

def printClustering(clustering):
 """Assumes: clustering is a sequence of clusters
 Prints information about each cluster
 Returns list of fraction of pos cases in each cluster"""

 ...

def testClustering(patients, numClusters, seed = 0, numTrials = 5):
 random.seed(seed)
 bestClustering = trykmeans(patients, numClusters, numTrials)
 posFracs = printClustering(bestClustering)
 return posFracs

patients = getData()
for k in (2,):
 print('\n Test k-means (k = ' + str(k) + ')
 posFracs = testClustering(patients, k)
Result of Running It

Test k-means (k = 2)
Cluster of size 118 with fraction of positives = 0.3305
Cluster of size 132 with fraction of positives = 0.3333

Like it?

Try patients = getData(True)

Test k-means (k = 2)
Cluster of size 224 with fraction of positives = 0.2902
Cluster of size 26 with fraction of positives = 0.6923

Happy with sensitivity?
How Many Positives Are There?

```
numPos = 0
for p in patients:
    if p.getLabel() == 1:
        numPos += 1
print('Total number of positive patients =', numPos)
```

Total number of positive patients = 83

Test k-means (k = 2)
Cluster of size 224 with fraction of positives = 0.2902
Cluster of size 26 with fraction of positives = 0.6923
A Hypothesis

- Different subgroups of positive patients have different characteristics
- How might we test this?
- Try some other values of k

```python
patients = getData()
for k in (2, 4, 6):
    print('
    Test k-means (k = ' + str(k) + ')
    posFracs = testClustering(patients, k, 2)
```
Testing Multiple Values of k

Test k-means (k = 2)
Cluster of size 224 with fraction of positives = 0.2902
Cluster of size 26 with fraction of positives = 0.6923

Test k-means (k = 4)
Cluster of size 26 with fraction of positives = 0.6923
Cluster of size 86 with fraction of positives = 0.0814
Cluster of size 76 with fraction of positives = 0.7105
Cluster of size 62 with fraction of positives = 0.0645

Test k-means (k = 6)
Cluster of size 49 with fraction of positives = 0.0204
Cluster of size 26 with fraction of positives = 0.6923
Cluster of size 45 with fraction of positives = 0.0889
Cluster of size 54 with fraction of positives = 0.0926
Cluster of size 36 with fraction of positives = 0.7778
Cluster of size 40 with fraction of positives = 0.675

Pick a k