6.004 Computation Structures
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.
Problem 1. Measuring information

A. A person picks a name out of a hat containing names of 5 women and 3 men, and tells you a man has been selected. How much information have they given you about the selection?

B. You're given a standard deck of 52 playing cards that you start to turn face up, card by card. So far as you know, they're in completely random order. How many new bits of information do you get when the first card is flipped over? The fifth card? The last card?

C. X is an unknown N-bit binary number (N > 3). You are told that the first three bits of X are 011. How many bits of information about X have you been given?

D. X is an unknown 8-bit binary number. You are given another 8-bit binary number, Y, and told that the Hamming distance between X and Y is one. How many bits of information about X have you been given?

Problem 2. Variable length encoding & compression

A. Huffman and other coding schemes tend to devote more bits to the coding of
 (A) symbols carrying the most information
 (B) symbols carrying the least information
 (C) symbols that are likely to be repeated consecutively
 (D) symbols containing redundant information

B. Consider the following two Huffman decoding trees for a variable-length code involving 5 symbols: A, B, C, D and E.
Using Tree #1, decode the following encoded message: "01000111101".

C. ★ Suppose we were encoding messages that the following probabilities for each of the 5 symbols:
\[p(A) = 0.5 \]
\[p(B) = p(C) = p(D) = p(E) = 0.125 \]
Which of the two encodings above (Tree #1 or Tree #2) would yield the shortest encoded messages averaged over many messages?

D. ★ Using the probabilities for A, B, C, D and E given above, construct a variable-length binary decoding tree using a simple greedy algorithm as follows:

1. Begin with the set S of symbols to be encoded as binary strings, together with the probability P(x) for each symbol x. The probabilities sum to 1, and measure the frequencies with which each symbol appears in the input stream. In the example from lecture, the initial set S contains the four symbols and associated probabilities in the above table.
2. Repeat the following steps until there is only 1 symbol left in S:
 A. Choose the two members of S having lowest probabilities. Choose arbitrarily to resolve ties. In the example above, D and E might be the first nodes chosen.
 B. Remove the selected symbols from S, and create a new node of the decoding tree whose children (sub-nodes) are the symbols you've removed. Label the left branch with a "0", and the right branch with a "1". In the first iteration of the example above, the bottom-most internal node (leading to D and E) would be created.
 C. Add to S a new symbol (e.g., "DE" in our example) that represents this new node. Assign this new symbol a probability equal to the sum of the probabilities of the two nodes it replaces.

E. Huffman coding is used to compactly encode the species of fish tagged by a game warden. If 50% of the fish are bass and the rest are evenly distributed among 15 other species, how many bits would be used to encode the species of a bass?
F. Consider the sum of two six-sided dice. Even when the dice are "fair" the amount information conveyed by a single sum depends on what the sum is since some sums are more likely than others, as shown in the following figure:

![Dice Sums and Information](image)

What is the average number of bits of information provided by the sum of 2 dice? Suppose we want to transmit the sums resulting from rolling the dice 1000 times. How many bits should we expect that transmission to take?

G. Suppose we want to transmit the sums resulting from rolling the dice 1000 times. If we use 4 bits to encode each sum, we'll need 4000 bits to transmit the result of 1000 rolls. If we use a variable-length binary code which uses shorter sequences to encode more likely sums then the expected number of bits need to encode 1000 sums should be less than 4000. Construct a variable-length encoding for the sum of two dice whose expected number of bits per sum is less than 3.5. (Hint: It's possible to find an encoding for the sum of two dice with an expected number of bits = 3.306.)

H. Okay, so can we make an encoding for transmitting 1000 sums that has an expected length smaller than 3306 bits?

Problem 3. Variable-length encoding

After spending the afternoon in the dentist's chair, Ben Bitdiddle has invented a new language called DDS made up entirely of vowels (the only sounds he could make with someone's hand in his mouth). The DDS alphabet consists of the five letters "A", "E", "I", "O", and "U" which occur in messages with the following probabilities:

<table>
<thead>
<tr>
<th>Letter</th>
<th>Probability of occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>i3 = log2(36/2) = 4.170 bits</td>
</tr>
<tr>
<td>E</td>
<td>i4 = log2(36/3) = 3.585 bits</td>
</tr>
<tr>
<td>I</td>
<td>i5 = log2(36/4) = 3.170 bits</td>
</tr>
<tr>
<td>O</td>
<td>i6 = log2(36/5) = 2.848 bits</td>
</tr>
<tr>
<td>U</td>
<td>i7 = log2(36/6) = 2.585 bits</td>
</tr>
<tr>
<td>A</td>
<td>p(A) = 0.15</td>
</tr>
<tr>
<td>----</td>
<td>-------------</td>
</tr>
<tr>
<td>E</td>
<td>p(E) = 0.4</td>
</tr>
<tr>
<td>I</td>
<td>p(I) = 0.15</td>
</tr>
<tr>
<td>O</td>
<td>p(O) = 0.15</td>
</tr>
<tr>
<td>U</td>
<td>p(U) = 0.15</td>
</tr>
</tbody>
</table>

A. ★ If you are told that the first letter of a message is "A", give an expression for the number of bits of information have you received.

B. ★ Ben is trying to invent a fixed-length binary encoding for DDS that permits detection and correction of single bit errors. Briefly describe the constraints on Ben's choice of encodings for each letter that will ensure that single-bit error detection and correction is possible. (Hint: think about Hamming distance.)

C. ★ Giving up on error detection and correction, Ben turns his attention to transmitting DDS messages using as few bits as possible. Assume that each letter will be separately encoded for transmission. Help him out by creating a variable-length encoding that minimizes the average number of bits transmitted for each letter of the message.

Problem 4. **Modular arithmetic and 2's complement representation**

Most computers choose a particular word length (measured in bits) for representing integers and provide hardware that performs various arithmetic operations on word-size operands. The current generation of processors have word lengths of 32 bits; restricting the size of the operands and the result to a single word means that the arithmetic operations are actually performing arithmetic modulo 2^{32}.

Almost all computers use a 2's complement representation for integers since the 2's complement addition operation is the same for both positive and negative numbers. In 2's complement notation, one negates a number by forming the 1's complement (i.e., for each bit, changing a 0 to 1 and vice versa) representation of the number and then adding 1. By convention, we write 2's complement integers with the most-significant bit (MSB) on the left and the least-significant bit (LSB) on the right. Also by convention, if the MSB is 1, the number is negative; otherwise it's non-negative.

A. How many different values can be encoded in a 32-bit word?

B. Please use a 32-bit 2's complement representation to answer the following questions. What are the representations for

 zero
the most positive integer that can be represented
the most negative integer that can be represented
What are the decimal values for the most positive and most negative integers?

C. Since writing a string of 32 bits gets tedious, it's often convenient to use hexadecimal notation where a single digit in the range 0-9 or A-F is used to represent groups of 4 bits using the following encoding:

<table>
<thead>
<tr>
<th>hex bits</th>
<th>hex bits</th>
<th>hex bits</th>
<th>hex bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0000</td>
<td>4 0100</td>
<td>8 1000</td>
<td>C 1100</td>
</tr>
<tr>
<td>1 0001</td>
<td>5 0101</td>
<td>9 1001</td>
<td>D 1101</td>
</tr>
<tr>
<td>2 0010</td>
<td>6 0110</td>
<td>A 1010</td>
<td>E 1110</td>
</tr>
<tr>
<td>3 0011</td>
<td>7 0111</td>
<td>B 1011</td>
<td>F 1111</td>
</tr>
</tbody>
</table>

Give the 8-digit hexadecimal equivalent of the following decimal and binary numbers: \(37_{10}, -32768_{10}, 11011110101101111011101111_2\).

D. ★ Calculate the following using 6-bit 2's complement arithmetic (which is just a fancy way of saying to do ordinary addition in base 2 keeping only 6 bits of your answer). Show your work using binary (base 2) notation. Remember that subtraction can be performed by negating the second operand and then adding it to the first operand.

- \(13 + 10\)
- \(15 - 18\)
- \(27 - 6\)
- \(-6 - 15\)
- \(21 + (-21)\)
- \(31 + 12\)

Explain what happened in the last addition and in what sense your answer is "right".

E. At first blush "Complement and add 1" doesn't seem to an obvious way to negate a two's complement number. By manipulating the expression \(A+(-A)=0\), show that "complement and add 1" does produce the correct representation for the negative of a two's complement number. Hint: express 0 as (-1+1) and rearrange terms to get -A on one side and XXX+1 on the other and then think about how the expression XXX is related to A using only logical operations (AND, OR, NOT).

Problem 5. Error detection and correction
A. To protect stored or transmitted information one can add check bits to the data to facilitate error detection and correction. One scheme for detecting single-bit errors is to add a parity bit:

\[b_0b_1b_2b_{N-1}p \]

When using even parity, p is chosen so that the number of "1" bits in the protected field (including the p bit itself) is even; when using odd parity, p is chosen so that the number of "1" bits is odd. In the remainder of this problem assume that even parity is used.

To check parity-protected information to see if an error has occurred, simply compute the parity of information (including the parity bit) and see if the result is correct. For example, if even parity was used to compute the parity bit, you would check if the number of "1" bits was even.

If an error changes one of the bits in the parity-protected information (including the parity bit itself), the parity will be wrong, i.e., the number of "1" bits will be odd instead of even. Which of the following parity-protected bit strings has a detectable error assuming even parity?

(1) 11101101111011011
(2) 11011110101011110
(3) 10111110111011110
(4) 00000000000000000

B. Detecting errors is useful, but it would also be nice to correct them! To build an error correcting code (ECC) we'll use additional check bits to help pinpoint where the error occurred. There are many such codes; a particularly simple one for detecting and correcting single-bit errors arranges the data into rows and columns and then adds (even) parity bits for each row and column. The following arrangement protects nine data bits:

\[
\begin{array}{ccc}
\text{b0,0} & \text{b0,1} & \text{b0,2} & \text{prow0} \\
\text{b1,0} & \text{b1,1} & \text{b1,2} & \text{prow1} \\
\text{b2,0} & \text{b2,1} & \text{b2,2} & \text{prow2} \\
\text{pcol0} & \text{pcol1} & \text{pcol2} \\
\end{array}
\]

A single-bit error in one of the data bits (bI,J) will generate two parity errors, one in row I and one in column J. A single-bit error in one of the parity bits will generate just a single parity error for the corresponding row or column. So after computing the parity of each row and column, if both a row and a column parity error are detected, inverting the listed value for the appropriate data bit will produce the corrected data. If only a single parity error is detected, the data is correct (the error was one of the parity bits).

Give the correct data for each of the following data blocks protected with the row/column ECC.
shown above.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>1011</td>
<td>(2)</td>
<td>1100</td>
</tr>
<tr>
<td></td>
<td>0110</td>
<td></td>
<td>0000</td>
</tr>
<tr>
<td></td>
<td>0011</td>
<td></td>
<td>0101</td>
</tr>
<tr>
<td></td>
<td>011</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

C. The row/column ECC can also detect many double-bit errors (i.e., two of the data or check bits have been changed). Characterize the sort of double-bit errors the code does not detect.

D. In the days of punch cards, decimal digits were represented with a special encoding called 2-out-of-5 code. As the name implies two out of five positions were filled with 1's as shown in the table below:

<table>
<thead>
<tr>
<th>Code</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>11000</td>
<td>1</td>
</tr>
<tr>
<td>10100</td>
<td>2</td>
</tr>
<tr>
<td>01100</td>
<td>3</td>
</tr>
<tr>
<td>10010</td>
<td>4</td>
</tr>
<tr>
<td>01010</td>
<td>5</td>
</tr>
<tr>
<td>00110</td>
<td>6</td>
</tr>
<tr>
<td>10001</td>
<td>7</td>
</tr>
<tr>
<td>01001</td>
<td>8</td>
</tr>
<tr>
<td>00101</td>
<td>9</td>
</tr>
<tr>
<td>00011</td>
<td>0</td>
</tr>
</tbody>
</table>

What is the smallest Hamming distance between any two encodings in 2-out-of-5 code?

E. Characterize the types of errors (eg, 1- and 2-bit errors) that can be reliably detected in a 2-out-of-5 code?

F. We know that even parity is another scheme for detecting errors. If we change from a 2-out-of-5 code to a 5-bit code that includes an even parity bit, how many additional data encodings become available?
Problem 6. Hamming single-error-correcting-code

The Hamming single-error-correcting code requires approximately \(\log_2(N) \) check bits to correct single-bit errors. Start by renumbering the data bits with indices that aren't powers of two:

Indices for 16 data bits = 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21

The idea is to compute the check bits choosing subsets of the data in such a way that a single-bit error will produce a set of parity errors that uniquely indicate the index of the faulty bit:

- \(p_0 \) = even parity for data bits 3, 5, 7, 9, 11, 13, 15, 17, 19, 21
- \(p_1 \) = even parity for data bits 3, 6, 7, 10, 11, 14, 15, 18, 19
- \(p_2 \) = even parity for data bits 5, 6, 7, 12, 13, 14, 15, 20, 21
- \(p_3 \) = even parity for data bits 9, 10, 11, 12, 13, 14, 15
- \(p_4 \) = even parity for data bits 17, 18, 19, 20, 21

Note that each data bit appears in at least two of the parity calculations, so a single-bit error in a data bit will produce at least two parity errors. When checking a protected data field, if the number of parity errors is zero or one, the data bits are okay (exactly one parity error indicates that one of the parity bits was corrupted). If two or more parity errors are detected then the errors identify exactly which bit was corrupted.

A. What is the relationship between the index of a particular data bit and the check subsets in which it appears? Hint: consider the binary representation of the index.

B. If the parity calculations involving \(p_0 \), \(p_2 \) and \(p_3 \) fail, assuming a single-bit error what is the index of the faulty data bit?

C. The Hamming SECC doesn't detect all double-bit errors. Characterize the types of double-bit errors that will not be detected. Suggest a simple addition to the Hamming SECC that allows detection of all double-bit errors.