Lecture 16: Shortest Paths II - Dijkstra

Lecture Overview

- Review
- Shortest paths in DAGs
- Shortest paths in graphs without negative edges
- Dijkstra’s Algorithm

Readings

CLRS, Sections 24.2-24.3

Review

d[v] is the length of the current shortest path from starting vertex s. Through a process of relaxation, d[v] should eventually become δ(s, v), which is the length of the shortest path from s to v. Π[v] is the predecessor of v in the shortest path from s to v.

Basic operation in shortest path computation is the relaxation operation

\[
\text{RELAX}(u, v, w) \\
\text{if } d[v] > d[u] + w(u, v) \\
\text{then } d[v] \leftarrow d[u] + w(u, v) \\
\Pi[v] \leftarrow u
\]

Relaxation is Safe

Lemma: The relaxation algorithm maintains the invariant that d[v] ≥ δ(s, v) for all v ∈ V.

Proof: By induction on the number of steps.

Consider RELAX(u, v, w). By induction d[u] ≥ δ(s, u). By the triangle inequality, δ(s, v) ≤ δ(s, u) + δ(u, v). This means that δ(s, v) ≤ d[u] + w(u, v), since d[u] ≥ δ(s, u) and w(u, v) ≥ δ(u, v). So setting d[v] = d[u] + w(u, v) is safe. □
DAGs:

Can’t have negative cycles because there are no cycles!

1. Topologically sort the DAG. Path from \(u \) to \(v \) implies that \(u \) is before \(v \) in the linear ordering.

2. One pass over vertices in topologically sorted order relaxing each edge that leaves each vertex.

\(\Theta(V + E) \) time

Example:

![Figure 1: Shortest Path using Topological Sort.](image)

Vertices sorted left to right in topological order

Process \(r \): stays \(\infty \). All vertices to the left of \(s \) will be \(\infty \) by definition

Process \(s \): \(t : \infty \rightarrow 2 \quad x : \infty \rightarrow 6 \) (see top of Figure 2)
DIJKSTRA Demo
Dijkstra’s Algorithm

For each edge \((u, v) \in E\), assume \(w(u, v) \geq 0\), maintain a set \(S\) of vertices whose final shortest path weights have been determined. Repeatedly select \(u \in V - S\) with minimum shortest path estimate, add \(u\) to \(S\), relax all edges out of \(u\).

Pseudo-code

\[
\text{Dijkstra} (G, W, s) \quad \text{\//uses priority queue Q} \\
\text{Initialize} (G, s) \\
S \leftarrow \phi \\
Q \leftarrow V[G] \quad \text{\//Insert into Q} \\
\text{while} \ Q \neq \phi \\
\quad \text{do} \ u \leftarrow \text{EXTRACT-MIN}(Q) \quad \text{\//deletes u from Q} \\
\quad \quad S = S \cup \{u\} \\
\quad \text{for each vertex} \ v \in \text{Adj}[u] \\
\quad \quad \text{do} \ \text{RELAX} (u, v, w) \quad \leftarrow \text{this is an implicit DECREASE_KEY operation}
\]
Example

Strategy: Dijkstra is a greedy algorithm: choose closest vertex in $V - S$ to add to set S.

Correctness: We know relaxation is safe. The key observation is that each time a vertex u is added to set S, we have $d[u] = \delta(s, u)$.

Figure 4: Dijkstra Execution
Dijkstra Complexity

Θ(v) inserts into priority queue
Θ(v) EXTRACT_MIN operations
Θ(E) DECREASE_KEY operations

Array impl:

Θ(v) time for extra min
Θ(1) for decrease key
Total: Θ(VV + E1) = Θ(V^2 + E) = Θ(V^2)

Binary min-heap:

Θ(lg V) for extract min
Θ(lg V) for decrease key
Total: Θ(V lg V + E lg V)

Fibonacci heap (not covered in 6.006):

Θ(lg V) for extract min
Θ(1) for decrease key
amortized cost
Total: Θ(V lg V + E)