Lecture 21: Dynamic Programming III

Lecture Overview

- Subproblems for strings
- Parenthesization
- Edit distance (& longest common subseq.)
- Knapsack
- Pseudopolynomial Time

Review:

* 5 easy steps to dynamic programming

(a) define subproblems count # subproblems
(b) guess (part of solution) count # choices
(c) relate subproblem solutions compute time/subproblem
(d) recurse + memoize time = time/subproblem · # subproblems
 OR build DP table bottom-up
 check subproblems acyclic/topological order
(e) solve original problem: = a subproblem
 OR by combining subproblem solutions ⇒ extra time

* problems from L20 (text justification, Blackjack) are on sequences (words, cards)

* useful problems for strings/sequences x:

 suffixes $x[i:]$ \(\Theta(|x|)\) cheaper \(\Rightarrow\) use if possible
 prefixes $x[:i]$ \(\Theta(x^2)\)
 substrings $x[i:j]$ \(\Theta(x^2)\)
Parenthesization:

$$A \cdot B \cdot C \quad (A \cdot B) \cdot C \quad A \cdot (B \cdot C)$$

$\theta(n^2)$ time $\theta(n)$ time

Figure 1:

2. guessing = outermost multiplication $\left(\cdots\right)\left(\cdots\right)$$\uparrow_{k-1} \uparrow_k$$
 $$\implies \# \text{ choices } = O(n)$$

1. subproblems = prefixes & suffixes? NO
 $$= \text{ cost of substring } A[i : j]$$
 $$\implies \# \text{ subproblems } = \Theta(n^2)$$

3. recurrence:
 - $DP[i, j] = \min(\text{DP}[i, k] + \text{DP}[k, j] + \text{cost of multiplying } (A[i] \cdots A[k-1]) \text{ by } (A[k] \cdots A[j-1]) \text{ for } k \text{ in range}(i+1, j))$

 $$\text{DAG} \quad i \quad k \quad j$$

 - $DP[i, i + 1] = 0$
 $$\implies \text{cost per subproblem } = O(j - i) = O(n)$$

4. topological order: increasing substring size. Total time = $O(n^3)$

5. original problem = $DP[0, n]$
 ($& \text{ use parent pointers to recover parens.}$
 NOTE: Above DP is not shortest paths in the subproblem DAG! Two dependencies \implies not path!
Edit Distance

Used for DNA comparison, diff, CVS/SVN/. . . , spellchecking (typos), plagiarism detection, etc.
Given two strings x & y, what is the cheapest possible sequence of character edits (insert c, delete c, replace $c \rightarrow c'$) to transform x into y?

- cost of edit depends only on characters c, c'
- for example in DNA, $C \rightarrow G$ common mutation \implies low cost
- cost of sequence = sum of costs of edits
- If insert & delete cost 1, replace costs 0, minimum edit distance equivalent to finding longest common subsequence. Note that a subsequence is sequential but not necessarily contiguous.
- for example H I E R O G L Y P H O L O G Y vs. M I C H A E L A N G E L O \implies HELLO

Subproblems for multiple strings/sequences
- combine suffix-prefix/substring subproblems
- multiply state spaces
- still polynomial for $O(1)$ strings

Edit Distance DP

(1) subproblems: $c(i, j) = \text{edit-distance}(x[i:], y[j:])$ for $0 \leq i < |x|, 0 \leq j < |y|$
$\implies \Theta(|x| \cdot |y|)$ subproblems

(2) guess whether, to turn x into y, (3 choices):
- $x[i]$ deleted
- $y[j]$ inserted
- $x[i]$ replaced by $y[j]$

(3) recurrence: $c(i, j) = \text{maximum of:}$
- cost(delete $x[i]$) + $c(i + 1, j)$ if $i < |x|$
- cost(insert $y[j]$) + $c(i, j + 1)$ if $j < |y|$
- cost(replace $x[i] \rightarrow y[j]$) + $c(i + 1, j + 1)$ if $i < |x| \& j < |y|$

base case: $c(|x|, |y|) = 0$
$\implies \Theta(1)$ time per subproblem
(4) **topological order**: DAG in 2D table:

- bottom-up OR right to left
- only need to keep last 2 rows/columns
 \[\Rightarrow\] linear space
- total time = \(\Theta(|x| \cdot |y|)\)

(5) **original problem**: \(c(0, 0)\)

Knapsack:

Knapsack of size \(S\) you want to pack
- item \(i\) has integer size \(s_i\) & real value \(v_i\)
- goal: choose subset of items of maximum total value subject to total size \(\leq S\)

First Attempt:

1. **subproblem = value for suffix \(i\)**: WRONG
2. guessing = whether to include item \(i\) \(\Rightarrow\) # choices = 2
3. recurrence:
 - \(DP[i] = \max(DP[i+1], v_i + DP[i+1] \text{ if } s_i \leq S?)\)
 - not enough information to know whether item \(i\) fits — how much space is left? GUESS!

Correct:

1. **subproblem = value for suffix \(i\):**
 - given knapsack of size \(X\)
 \[\Rightarrow\] # subproblems = \(O(nS)\)
3. recurrence:

- \(DP[i, X] = \max(\{DP[i + 1, X], v_i + DP[i + 1, X - s_i]\} \text{ if } s_i \leq X) \)
- \(DP[n, X] = 0 \)

\[\implies \text{time per subproblem} = O(1) \]

4. topological order: for \(i \) in \(n, \ldots, 0 \): for \(X \) in \(0, \ldots S \)

\[\text{total time} = O(nS) \]

5. original problem = \(DP[0, S] \)

(\& use parent pointers to recover subset)

AMAZING: effectively trying all possible subsets! …but is this actually fast?

Polynomial time

Polynomial time = polynomial in input size

- here \(\Theta(n) \) if number \(S \) fits in a word
- \(O(n \log S) \) in general
- \(S \) is exponential in \(\log S \) (not polynomial)

Pseudopolynomial Time

Pseudopolynomial time = polynomial in the problem size AND the numbers (here: \(S, s_i \)'s, \(v_i \)'s) in input. \(\Theta(nS) \) is pseudopolynomial.

Remember:

- polynomial — GOOD
- exponential — BAD
- pseudopoly — SO SO