Lecture 22: Dynamic Programming IV

Lecture Overview

- 2 kinds of guessing
- Piano/Guitar Fingering
- Tetris Training
- Super Mario Bros.

Review:

* 5 easy steps to dynamic programming

(a) define subproblems count # subproblems
(b) guess (part of solution) count # choices
(c) relate subproblem solutions compute time/subproblem
(d) recurse + memoize time = time/subproblem ⋅ # subproblems
 OR build DP table bottom-up
 check subproblems acyclic/topological order
(e) solve original problem: = a subproblem
 OR by combining subproblem solutions ⇒ extra time

* 2 kinds of guessing:

(A) In (3), guess which other subproblems to use (used by every DP except Fibonacci)
(B) In (1), create more subproblems to guess/remember more structure of solution used by knapsack DP
 • effectively report many solutions to subproblem.
 • lets parent subproblem know features of solution.

Piano/Guitar Fingering:

Piano

[Parnscutt, Sloboda, Clarke, Raekallio, Desain, 1997]
[Hart, Bosch, Tsai 2000]
[Al Kasimi, Nichols, Raphael 2007] etc.

• given musical piece to play, say sequence of \(n \) (single) notes with right hand
• fingers $1, 2, \ldots, F = 5$ for humans

• metric $d(f, p, q, g)$ of difficulty going from note p with finger f to note q with finger g

e.g., $1 < f < g \land p > q \implies$ uncomfortable
 stretch rule: $p \ll q \implies$ uncomfortable
 legato (smooth) $\implies \infty$ if $f = g$
 weak-finger rule: prefer to avoid $g \in \{4, 5\}$
 $3 \rightarrow 4 \land 4 \rightarrow 3$ annoying \sim etc.

First Attempt:

1. subproblem = min. difficulty for suffix notes $[i:]$

2. guessing = finger f for first note i

3. recurrence:
 \[
 DP[i] = \min(DP[i + 1] + d(note[i], f, note[i + 1], g) \text{ for } g)
 \]
 \rightarrow not enough information!

Correct DP:

1. subproblem = min difficulty for suffix notes $[i:]$ given finger f on first note i
 $\implies n \cdot F$ subproblems

2. guessing = finger g for next note $i + 1$
 $\implies F$ choices

3. recurrence:
 \[
 DP[i, f] = \min(DP[i + 1, g] + d(note[i], f, note[i + 1], g) \text{ for } g \text{ in range}(F))
 \]
 $DP[n, f] = 0$
 $\implies \Theta(F)$ time/subproblem

4. topo. order: for i in reversed(range(n)):
 for f in $1, 2, \ldots, F$:
 total time $O(nF^2)$

5. orig. prob. = min(DP[0, f] for f in $1, \ldots, F$)
 (guessing very first finger)
Guitar

Up to S ways to play same note! (where S is # strings)

- redefine “finger” = finger playing note + string playing note
- $\implies F \rightarrow F \cdot S$

Generalization:

Multiple notes at once e.g. chords

- input: notes[i] = list of $\le F$ notes
 (can’t play > 1 note with a finger)
- state we need to know about “past” now assignment of F fingers to $\le F+1$ notes/null
 $\implies (F+1)^F$ such mappings

(1) $n \cdot (F+1)^F$ subproblems where $(F+1)^F$ is how notes[i] is played
(2) $(F+1)^F$ choices (how notes[i + 1] played)
(3) $n \cdot (F+1)^{2F}$ total time
 - works for 2 hands $F = 10$
 - just need to define appropriate d
Tetris Training:

- given sequence of \(n \) Tetris pieces & an empty board of small width \(w \)
- must choose orientation & \(x \) coordinate for each
- then must drop piece till it hits something
- full rows do not clear

 without the above two artificialities WE DON’T KNOW!
 (but: if nonempty board & \(w \) large then NP-complete)
- goal: survive i.e., stay within height \(h \)

First Attempt:

1. subproblem = survive in suffix \(i \)? WRONG
2. guessing = how to drop piece \(i \) \(\Rightarrow \) # choices = \(O(w) \)
3. recurrence: \(DP[i] - DP[i + 1] \)?! not enough information!

 What do we need to know about prefix : \(i \)?

Correct:

- 1. subproblem = survive? in suffix \(i \):

 given initial column occupancies \(h_0, h_1, \ldots, h_{w - 1} \), call it \(h \)

 \(\Rightarrow \) # subproblems = \(O(n \cdot h^w) \)

- 3. recurrence: \(DP[i, h] = \max\{DP[i, m] \text{ for valid moves } m \text{ of piece } i \text{ in } h\} \)

 \(\Rightarrow \) time per subproblem = \(O(w) \)

- 4. topo. order: for \(i \) in reversed(range(\(n \))): for \(h \cdots \)

 total time = \(O(nwh^w) \) (DAG as above)

- 5. solution = \(DP[0, 0] \)

 (& use parent pointers to recover moves)
Super Mario Bros

Platform Video Game

- given entire level (objects, enemies, …) \((\leftarrow n)\)
- small \(w \times h\) screen

 - configuration
 - screen shift \((\leftarrow n)\)
 - player position & velocity \((O(1))\) \((\leftarrow w)\)
 - object states, monster positions, etc. \((\leftarrow c^{w \cdot h})\)
 - anything outside screen gets reset \((\leftarrow c^{w \cdot h})\)
 - score \((\leftarrow S)\)
 - time \((\leftarrow T)\)

- transition function \(\delta\): \((\text{config}, \text{action}) \rightarrow \text{config'}\)
 - nothing, ↑, ↓, ←, →, B, A press/release

1. subproblem: best score (or time) from config, \(C\)
 \[\implies n \cdot c^{w \cdot h} \cdot S \cdot T\] subproblems

2. guess: next action to take from \(C\)
 \[\implies O(1)\] choices

3. recurrence:
 \[
 DP(C) = \begin{cases}
 C\.score & \text{if on flag} \\
 \infty & \text{if } C\.dead \text{ or } C\.time = 0 \\
 \max(DP(\delta(C,A))) & \text{for } A \text{ in actions}
 \end{cases}
 \]
 \[\implies O(1)\] time/subproblem

4. topo. order: increasing time

5. orig. prob.: \(DP(\text{start config.})\)

- pseudopolynomial in \(S \& T\)
- polynomial in \(n\)
- exponential in \(w \cdot h\)