Today: Dynamic Programming IV (of 4)
- 2 kinds of guessing
- piano/guitar fingering
- Tetris training
- Super Mario Bros.

* 5 easy steps to dynamic programming:
 1. define subproblems
 2. guess (part of solution)
 3. relate subprob. solutions
 4. recurse + memoize
 OR build DP table bottom-up
 - check subprobs. acyclic/topological order
 5. solve original problem: = a subproblem
 OR by combining subprob. solutions (⇒ extra time)

* 2 kinds of guessing:
 A: in 3, guess which other subproblems to use
 (used by every DP except Fibonacci)
 B: in 1, create more subproblems to guess/
 remember more structure of solution
 (used by knapsack DP)
 - effectively report many solutions to subprob.
 - lets parent subproblem know features of sol.
Piano/guitar fingering:

\begin{itemize}
\item Given musical piece to play, say sequence of \(n \) (single) notes with right hand
\item Fingers 1, 2, ..., \(F = 5 \) for humans
\item Metric \(d(f, p, g, q) \) of difficulty going from note \(p \) with finger \(f \) to note \(q \) with finger \(g \)
\item E.g., \(1 < f < g \) & \(p > q \) \(\Rightarrow \) uncomfortable stretch rule: \(p << q \Rightarrow \) uncomfortable legato (smooth) \(\Rightarrow \) \(\infty \) if \(f = g \)
\item Weak-finger rule: prefer to avoid \(g \in \{4, 5\} \)
\item 3→4 & 4→3 annoying \(\sim \) etc.
\end{itemize}

First attempt:

\begin{enumerate}
\item Subproblem = min difficulty for suffix notes \([i:]\)
\item Guessing = finger \(f \) for first note \([i]\)
\item Recurrence:
\[DP[i] = \min(DP[i+1] + d(note[i], f, note[i+1], ?)) \text{ for } f \] not enough information!
\end{enumerate}
Correct DP:

1. **subproblem** = min. difficulty for suffix notes[i:] given finger f on first note[i]
 \[\Rightarrow n \cdot F \text{ subproblems} \]

2. **guessing** = finger g for next note[i+1]
 \[\Rightarrow F \text{ choices} \]

3. **recurrence**:
 \[DP[i,f] = \min(DP[i+1,g] + d(note[i], f, note[i+1], g)) \text{ for } g \text{ in } \text{range}(F) \]
 \[DP[n,f] = \emptyset \]
 \[\Rightarrow \Theta(F) \text{ time/subproblem} \]

4. **topo. order**: for i in reversed(range(n)):
 for f in 1, 2, ..., F:
 - total time: \(\Theta(nF^2) \)

5. **orig. prob.** = \(\min(DP[\emptyset,f] \text{ for } f \text{ in } 1,...,F) \) (guessing very first finger)

DAG:

- notes
- fingers

Difficulty
Guitar: up to S ways to play same note!
- redefine "finger" = finger playing note + string playing note

$\Rightarrow F \rightarrow F \cdot S$

Generalization: multiple notes at once
- input: notes[i] = list of $\leq F$ notes
 (can't play >1 note with a finger)
- state we need to know about "past"
 now assignment of fingers to notes/null

$\Rightarrow (F+1)^F$ such mappings

1. $n \cdot (F+1)^F$ subproblems
2. $(F+1)^F$ choices (how notes[i] is played)
3. $n \cdot (F+1)^{2F}$ total time

- works for 2 hands ($F=10$)
- just need to define appropriate d
Tetris training:
- given sequence of \(n \) Tetris pieces & an empty board of small width \(w \)
- must choose orientation & \(x \) coordinate for each
- then must drop piece till it hits something
- full rows do not clear

(without these artificialities WE DON'T KNOW!)

(but: if nonempty board & \(w \) large then NP-complete)

- goal: survive i.e. stay within height \(h \)

First attempt:
1. subproblem = survive in suffix \(i \): \(\subseteq \) WRONG
2. guessing = how to drop piece \(i \)
 \(\Rightarrow \) # choices = \(O(w) \)
3. recurrence: \(DP[i] = DP[i+1] \)?! not enough information!
 \(\Rightarrow \) What do we need to know about prefix \(: i \)?

Correct:
1. subproblem = survive? in suffix \(i \):
 - given initial column occupancies \(h_0, h_1, \ldots, h_{w-1} \)
 \(\Rightarrow \) # subproblems = \(O(n \cdot h^w) \)
2. recurrence: \(DP[i, h^i] = \max (DP[i, m]) \)
 for valid moves \(m \) of piece \(i \) in \(h^i \)
\(\Rightarrow \) time per subproblem = \(O(w) \)
3. topo. order: for \(i \) in reversed(range(n)): for \(h^i \)
 \(\Rightarrow \) total time = \(O(n w h^w) \) (DAG as above)
4. solution = \(DP[0, \hat{h}] \)
 (& use parent pointers to recover moves)
Super Mario Bros/platform video game
- given entire level
- small \(n \times w \times h \) screen
- configuration:
 - screen shift
 - player position & velocity
 - object states, monster positions, etc.
 - anything outside screen gets reset
- score
- time

- transition function \(S: (\text{config}, \text{action}) \rightarrow \text{config} \)
 - nothing, \(\uparrow\downarrow\leftarrow\rightarrow\text{press/release} \)

1. \(\text{subproblem} = \text{best score (or time) from config. } C \Rightarrow n \cdot c^{w \times h} \cdot S \cdot T \text{ subproblems} \)
2. \(\text{guess: next action to take from } C \Rightarrow O(1) \text{ choices} \)
3. \(\text{recurrence: } \text{DP}(C) = \begin{cases} C.\text{score} & \text{if on flag} \\ \infty & \text{if } C.\text{dead or } C.\text{time} = \emptyset \\ \max(\text{DP}(S(C,A))) & \text{for } A \text{ in actions} \end{cases} \Rightarrow O(1) \text{ time/subproblem} \)
4. \(\text{topo. order: increasing time} \)
5. \(\text{orig. prob. = DP(start config.)} \)

- pseudopolynomial in \(S \) & \(T \)
- polynomial in \(n \)
- exponential in \(w \cdot h \)