Today: Computational Complexity

- P, EXP, R
- most problems are uncomputable
- NP
- hardness & completeness
- reductions

P = \{ problems solvable in polynomial time \}
what this class is all about

EXP = \{ problems solvable in exponential time \}

R = \{ problems solvable in finite time \}
recursive [Turing 1936; Church 1941]

Examples:
- negative-weight cycle detection ∈ P
- nxn Chess ∈ EXP but $\notin P$
 ➔ who wins from given board config.?
- Tetris ∈ EXP but don’t know whether ∈ P
 ➔ survive given pieces from given board
Halting problem: given a computer program, does it ever halt (stop)?
- **uncomputable** ($\in \mathbb{R}$): no algorithm solves it correctly in finite time on all inputs
- **decision problem**: answer is YES or NO

Most decision problems are uncomputable:
- program \approx binary string \approx nonneg. integer $\in \mathbb{N}$
- decision problem = a function from binary strings to $\{\text{YES, NO}\}$

\approx infinite sequence of bits \approx real number $\in \mathbb{R}$
- $|\mathbb{N}| < |\mathbb{R}|$: no assignment of unique nonneg. integers to real numbers (IR uncountable)

\Rightarrow not nearly enough programs for all problems
- each program solves only one problem
\Rightarrow almost all problems cannot be solved
$NP = \{ \text{decision problems solvable in poly. time via a "lucky" algorithm?} \}
\text{Can make lucky guesses, always "right", without trying all options}
- \text{nondeterministic model: algorithm makes guesses & then says YES or NO}
- \text{guesses guaranteed to lead to YES outcome if possible (no otherwise)}
\Rightarrow \{ \text{decision problems with solutions that can be "checked" in polynomial time?} \}
- \text{when answer = YES, can "prove" it & poly.-time algorithm can check proof}

Example: Tetris \in NP
- \text{nondeterministic alg: - guess each move - did I survive?}
- \text{proof of YES: list what moves to make (rules of Tetris are easy)}
$P \neq NP$: big conjecture (worth $1,000,000$)

- can't engineer luck
- generating (proofs of) solutions can be harder than checking them

Claim: if $P \neq NP$, then Tetris $\in NP \setminus P$

[Breukelaar, Demaine, Hohenberger, Hoogeboom, Kusters, Liben-Nowell 2004]

Why? Tetris is \underline{NP}-hard

= "as hard as" every problem $\in NP$

- in fact \underline{NP}-complete $= NP \cap \underline{NP}$-hard

Similarly: Chess is \underline{EXP}-complete

= $EXP \cap \underline{EXP}$-hard

as hard as every problem in EXP.

\Rightarrow if $NP \neq EXP$, then Chess $\in EXP \setminus NP$

also open, but less famous/"important"
Reductions: convert your problem into a problem you already know how to solve (instead of solving from scratch)
- most common algorithm design technique
- unweighted shortest path \(\Rightarrow \) weighted set weights = 1
- min-product path \(\Rightarrow \) shortest path take logs [PS6-1]
- longest path \(\Rightarrow \) shortest path negate weights [Quiz 2, P1k]
- shortest ordered tour \(\Rightarrow \) shortest path k copies of the graph [Quiz 2, P5]
- cheapest leaky-tank path \(\Rightarrow \) shortest path graph reduction [Quiz 2, P6]

These are all:

- One-call reductions: A problem \(\Rightarrow \) B problem cooler
 A solution \(\leftarrow \) B solution

- Multicall reductions: solve A using free calls to B
 - in this sense, every algorithm reduces problem \(\Rightarrow \) model of computation

- NP-complete problems are all interreducible using polynomial-time reductions (same difficulty)
 \(\Rightarrow \) can use reductions to prove NP-hardness e.g. 3-Partition \(\Rightarrow \) Tetris
Examples of NP-complete problems:
- Knapsack (pseudopoly, not poly)
- 3-Partition: given n integers, can you divide them into triples of equal sum?
- Traveling Salesman Problem: shortest path that visits all vertices of a given graph
 - decision version: is min weight ≤ x?
- Longest common subsequence of k strings
- Minesweeper, Sudoku, & most puzzles
- SAT: given a Boolean formula (and, or, not), is it ever true? \(x \text{ and not } x \Rightarrow \text{NO} \)
- Shortest paths amidst obstacles in 3D
- 3-coloring a given graph
- Find largest clique in a given graph