6.006 Introduction to Algorithms
Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.
Problem Set 5

This problem set is due Thursday April 24 at 11:59PM.
Solutions should be turned in through the course website in PDF form using \LaTeX{} or scanned handwritten solutions.
A template for writing up solutions in \LaTeX{} is available on the course website.
Remember, your goal is to communicate. Full credit will be given only to the correct solution which is described clearly. Convoluted and obtuse descriptions might receive low marks, even when they are correct. Also, aim for concise solutions, as it will save you time spent on write-ups, and also help you conceptualize the key idea of the problem.

Exercises are for extra practice and should not be turned in.

Exercises:

- CLRS 24.1-1 (page 591)
- CLRS 24.3-2 (page 600)
- CLRS 24.3-4 (page 600)
- CLRS 24.5-8 (page 614)
- CLRS 24.3-6 (page 600)

1. (15 points) True or False.
Decide whether these statements are True or False. You must briefly justify all your answers to receive full credit.

(a) (5 points) If some edge weights are negative, the shortest paths from \(s \) can be obtained by adding a constant \(C \) to every edge weight, large enough to make all edge weights nonnegative, and running Dijkstra’s algorithm.

(b) (5 points) Let \(P \) be a shortest path from some vertex \(s \) to some other vertex \(t \). If the weight of each edge in the graph is squared, \(P \) remains a shortest path from \(s \) to \(t \).
(c) (5 points) A longest simple path from s to t is defined to be a path from s to t that does not contain cycles, and has the largest possible weight.

Given a directed graph G with nonnegative edge weights and two nodes s and t, the following algorithm can be used to either find a longest simple path from s to t, or determine that a cycle is reachable from s:

- Negate all the edge weights.
- Run Bellman-Ford on the new graph.
- If Bellman-Ford finds a shortest path from s to t, return that as the longest simple path.
- Otherwise, declare that a cycle is reachable from s.

Assume t is reachable from s.

2. (15 points) Critical Edges.

You are given a graph $G = (V, E)$ a weight function $w : E \rightarrow \mathbb{R}$, and a source vertex s. Assume $w(e) \geq 0$ for all $e \in E$.

We say that an edge e is upwards critical if by increasing $w(e)$ by any $\epsilon > 0$ we increase the shortest path distance from s to some vertex $v \in V$.

We say that an edge e is downwards critical if by decreasing $w(e)$ by any $\epsilon > 0$ we decrease the shortest path distance from s to some vertex $v \in V$ (however, by definition, if $w(e) = 0$ then e is not downwards critical, because we can’t decrease its weight below 0).

(a) (5 points) Claim: an edge (u, v) is downwards critical if and only if there is a shortest path from s to v that ends at (u, v), and $w(u, v) > 0$. Prove the claim above.

(b) (5 points) Make a claim similar to the one above, but for upwards critical edges, and prove it.

(c) (5 points) Using the claims from the previous two parts, give an $O(E \log V)$ time algorithm that finds all downwards critical edges and all upwards critical edges in G.
3. **(30 points)** Implementing Dijkstra.

The Howe & Ser Moving Company is transporting the Caltech Cannon from Caltech’s campus to MIT’s and wants to do so most efficiently. Fortunately, you have at your disposal the National Highway Planning Network (NHPN), packaged for you in ps5_dijkstra.zip. You can learn more about the NHPN at http://www.fhwa.dot.gov/planning/nhpn/

This data includes node and link text files from the NHPN. Open nhpn.nod and nhpn.lnk in a text editor to get a sense of how the data is stored (datadict.txt has a more precise description of the data fields and their meanings). To save you the trouble of parsing these structures from a file, we have provided you with a Python module nhpn.py containing code to load the text files into Node and Link objects. Read nhpn.py to understand the format of the Node and Link objects you will be given.

Additionally, we have provided some tools to help you visualize the output from your algorithms. You can use the Visualizer class to produce a KML (Google Earth) file.

To view such a file on Google Maps, place it in a web-accessible location, such as your Athena Public directory, and then search for its URL on Google Maps.

For this problem, you will modify the file dijkstra.py. As you solve each part of the problem, check your work by running test_dijkstra.py. As usual, remember to comment your code, including docstrings at the top of each function.

(a) **(3 points)** Write a short function node_by_name(nodes, city, state) to return a node from the given city/state. Note that some nodes have a description which isn’t solely the city name, e.g. CAMBRIDGE NW or NORTH CAMBRIDGE, either of which we would like to match a query where city==’CAMBRIDGE’. Given a choice of more than one node, choose the first node that appears in the data.

(b) **(3 points)** The links you are given do not include weights, so instead we will use the geographical positions of the edge’s nodes.

Write a function distance(node1, node2) to return the distance between two NHPN nodes. Nodes come with latitude and longitude (in millionths of degrees).

For simplicity, treat these instead as (x, y) coordinates on a flat surface, where the distance between two points can be easily calculated using the Pythagorean Theorem.

Hint: You may find the math.hypot function useful.

(c) **(24 points)** Implement Dijkstra’s algorithm to find the shortest path between two vertices in a graph with non-negative edge weights.

Your function shortest_path(nodes, edges, weight, s, t) will be given a list of Node objects, a list of Edge objects (undirected), a function weight(node1, node2) which returns the weight of any edge between node1 and
node2, a source Node s and a destination Node t. Your function should return a list of Node objects representing a path from s to t.

Dijkstra’s algorithm uses a priority queue, but this priority queue has one subtle requirement not met by the heap.py implementation seen earlier in class. Dijkstra’s algorithm calls decrease_key, but decrease_key requires the index of an item in the heap, and Dijkstra’s algorithm would have no way of knowing the current index corresponding to a particular Node. To solve this problem, the course staff has written an augmented heap object, heap_id, with the following extra features:

• insert(key) returns a unique ID.
• A new method, decrease_key_using_id(ID, key) takes an ID instead of an index.
• A new method, extract_min_with_id() extracts the minimum element and returns a pair (key, ID)

You may import heap_id, without submitting the separate file.

Hint: The format in which you are given the data (a list of nodes, and a list of edges), is not what you want to use for Dijkstra’s algorithm. Start by preprocessing the data into a more useful graph representation. Don’t forget that the edges you are given are undirected.

(d) (Optional) Included in nhpn.py is a method to convert a list of nodes to a .kml file. .kml files can be viewed using Google Maps, by putting the file in a web-accessible location (like your Athena Public directory), going to http://maps.google.com and putting the URL in the search box.

Run visualize_path.py. This will create two files, path_flat.kml and path_curved.kml. Both should be paths from Pasadena CA to Cambridge MA. path_flat.kml was created using the distance function you wrote in part (b), and path_curved.kml was created using a distance function that does not assume the Earth is flat. Can you explain the differences? Also, try asking Google Maps for driving directions from Caltech to MIT to get a sense of how similar their answer is.