Lecture 16: Shortest Paths II: Bellman-Ford

Lecture Overview

- Review: Notation
- Generic S.P. Algorithm
- Bellman Ford Algorithm
 - Analysis
 - Correctness

Recall:

\[\text{path } p = \langle v_0, v_1, \ldots, v_k \rangle \]
\[(v_i, v_{i+1}) \in E \quad 0 \leq i < k \]
\[w(p) = \sum_{i=0}^{k-1} w(v_i, v_{i+1}) \]

Shortest path weight from \(u \) to \(v \) is \(\delta(u, v) \). \(\delta(u, v) \) is \(\infty \) if \(v \) is unreachable from \(u \), undefined if there is a negative cycle on some path from \(u \) to \(v \).

![Negative Cycle](image)

Figure 1: Negative Cycle

Generic S.P. Algorithm

Initialize:

- for \(v \in V \): \(d[v] \leftarrow \infty \)
- \(\Pi[v] \leftarrow \text{NIL} \)
- \(d[S] \leftarrow 0 \)

Main:

- repeat
 - select edge \((u, v)\) [somehow]
 - “Relax” edge \((u, v)\)
 \[
 \begin{cases}
 \text{if } d[v] > d[u] + w(u, v) : \\
 d[v] \leftarrow d[u] + w(u, v) \\
 \pi[v] \leftarrow u
 \end{cases}
 \]
- until you can’t relax any more edges or you’re tired or \ldots
Complexity:

Termination: Algorithm will continually relax edges when there are negative cycles present.

Figure 2: Algorithm may not terminate due to negative Cycles

Complexity could be exponential time with poor choice of edges.

Figure 3: Algorithm could take exponential time
5-Minute 6.006

Here’s what I want you to remember from 6.006 five years after you graduate

\[
T(n) = C_1 + C_2 T(n - C_3)
\]
\[
T(n) = C_1 + C_2 T(n / C_3)
\]

- **Exponential Bad** if \(C_2 > 1 \), trouble!
- **Polynomial Good**
 - if \(C_2 > 1 \) okay provided \(C_3 > 1 \)
 - if \(C_3 > 1 \)
 - **Divide & Conquer**

![Figure 4: Exponential vs. Polynomial](image)

Bellman-Ford\((G, W, S)\)

Initiate ()
for \(i = 1 \) to \(|v| - 1\)
 for each edge \((u, v) \in E\):
 Relax\((u, v)\)
 for each edge \((u, v) \in E\)
 do if \(d[v] > d[u] + w(u, v) \)
 then report a negative-weight cycle exists

At the end, \(d[v] = \delta(s, v) \), if no negative-weight cycles

![Figure 5: The numbers in circles indicate the order in which the \(\delta \) values are computed](image)
Theorem:
If $G = (V, E)$ contains no negative weight cycles, then after Bellman-Ford executes $d[v] = \delta(u, v)$ for all $v \in V$.

Proof:
$v \in V$ be any vertex. Consider path p from s to v that is a shortest path with minimum number of edges.

\[
\delta(s, v) = \delta(s, v_1) + w(v_1, v)
\]

Figure 6: Illustration for proof

Initially $d[v_0] = 0 = \delta(S, V_0)$ and is unchanged since no negative cycles.
After 1 pass through E, we have $d[v_1] = \delta(s, v_1)$
After 2 passes through E, we have $d[v_2] = \delta(s, v_2)$
After k passes through E, we have $d[v_k] = \delta(s, v_k)$
No negative weight cycles $\implies p$ is simple $\implies p$ has $\leq |V| - 1$ edges

Corollary
If a value $d[v]$ fails to converge after $|V| - 1$ passes, there exists a negative-weight cycle reachable from s.